
PHYS 419: Classical Mechanics Lecture Notes

COMPLEX NUMBERS

Complex numbers and functions of these numbers are often used in physics. In fact,

functional analysis attains its full power only over the complex plane. We will not use any

advanced concepts from functional analysis in this course, but elementary applications of

complex numbers will be very handy.

A complex number z is defined just as an ordered pair of real numbers

z = (x, y)

where x is called the real component and y the imaginary component. We sometimes use

the notation

x = <(z) = Re(z) y = =(z) = Im(z)

Thus, it can be represented in a plane in the same way as a vector. However, the properties

of complex numbers are very different from properties of vectors. The complex numbers form

an entity which is called field. The real numbers are also a field. A field has to fulfill several

axioms and the operations on complex numbers are defined in such a way that this is the

case. We will not discuss the axiomatic approach further, but it is worth remembering, that

the familiar properties of the field of real numbers are also satisfied by complex numbers.

We will accept the following definitions for operations on complex numbers:

Sum:

z1 + z2 = (x1 + x2, y1 + y2)

Multiplication by a real number a ∈ R1:

az = (ax, ay)

These two oprations are analogous to operations on vectors. However, the product of two

complex numbers has no analog in vector spaces:

z1z2 = (x1x2 − y1y2, x1y2 + y1x2)

From these definitions follows that the number z = (0, 1) has an interesting property that

its square is on the real axis at -1:

z2 = zz = (0− 1, 0 + 0) = (−1, 0)
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or

z2 = −1 ∈ R1

This special number is denoted by letter i, i = (0, 1), and i2 = −1. We sometimes say that

i is the square root of −1. The definion of i allows one to write complex numbers in an

alternative form

z = (x, y) = x + iy

This for is particularly useful for performing operations on complex numbers since such

operations are now analogous to operations on polynomials. For example:

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 + i2y1y2 + ix1y2 + iy1x2 = x1x2 − y1y2 + i(x1y2 + y1x2)

in agreement with the definition given above.

We will now define the moduls or absolute value of a complex number and the complex

conjugated numbers. For the former, we want by analogy to vectors to have

|z| =
√

x2 + y2

To express this quantitiy in complex arithmetic, define the complex number conjugated to

z as

z∗ = (x,−y) = x− iy

We have for the product

zz∗ = (x + iy)(x− iy) = x2 − i2y2 + ixy − ixy = x2 + y2

so that we can write

|z| =
√

zz∗

Now we have to define functions of complex numbers. A direct definition is not possible

for most functions, therefore we define such functions using their Taylor expansions. Since

each Taylor expansion uses only additions and multiplications, and we know how to perform

such operations on complex numbers, any function can be defined in this way. For example,

ez = 1 + z +
z2

2
+

z3

3!
+ · · ·

The functions of complex variables can be differentiated with respect to z, i.e., one can

compute df(z)/dz. We will not need to define such a derivative in our course, but we will
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calculate a different, simpler type of derivatives of complex functions: with respect to a real

parameter common to the real and imaginary parts of a complex number. Thus, if

z(t) = x(t) + iy(t)

then
dz

dt
=

dx

dt
+ i

dy

dt

There are several useful relations that complex functions fulfill. One of them is the Euler

relation. For a number θ ∈ R1

eiθ =
∑ (iθ)n

n!
= 1− θ2

2
+

θ4

4!
+ · · ·+ i

(
θ +

θ3

3!
+ · · ·

)

where we used the property i2 = −1 and grouped real and imaginary components. We now

recognize that the real component is an expansion of the function cos θ and the imaginary

one of sin θ, so that we have

eiθ = cos θ + i sin θ

which is the Euler formula.

The Euler formula leads to the so-called “trigonometric” representation of complex num-

bers. Like in polar coordinates, for a number z = (x, y), x = r cos θ and y = r sin θ, where

r = |z| and θ = arctan(y/x). Thus,

z = r cos θ + ir sin θ = reiθ

where we used Euler’s formula in the last step. Since θ parametrizes z, we can calculate

derivatives of z with respect to θ using the definition given above.
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