Telescopes

1600s

2010

2030 – 30 meter telescope
General Properties
Telescopes - All Shapes and Sizes

Current Scientific Observatory

Future

Personal Sizes
Basic Terminology

- **Finderscope** – small telescope mounted along larger one to assist in finding targets
- **Aperture** – diameter of mirror or lens
- **Mount** – support structure that holds telescope and allows for pointing and tracking stars
- **Tube** – open or closed varieties
- **Eyepiece** – optical assembly for visual viewing. Scientific telescopes normally do not have eyepieces.
Types of Telescope Mounts

Altitude-Azimuth Mount (Alt-Az)
- Moves in altitude (up and down) and azimuth (left and right)
- Requires two motors to track
- Field of view rotates
- Has a blind spot at the zenith

Equatorial Mounts

German Equatorial
- Aligned with earth’s rotational axis.
- German Equatorial - Long arm with counterweights
- Moves east-west, north-south
- Requires one motor to track

Fork Mount

Dobsonian
- Alt-Azimuth
- Moves in altitude (up and down) and azimuth (left and right)
- Requires two motors to track
- Field of view rotates
- Has a blind spot at the zenith
Field Rotation with Alt/Az telescopes

Orion rising in the East
19:15 hrs

Orion due South at midnight
00:00 hrs

Orion setting in the West
04:36 hrs
Field Rotation over 24 Hours

- Observer’s latitude
- Right ascension and declination of object
- Earth’s sidereal motion
Field Rotation – Looking in an Eyepiece

The star will be centered, but surrounding stars will rotate.
Effects of Earth’s rotation
Equatorial Telescope Mounts
Telescope Tubes

Closed tube – generally bad because air is trapped inside

Open tube – allows air flow. Important consideration for science telescopes is that they be the same temperature as their surroundings to reduce air motion.
Telescope Magic Numbers

- Aperture - Diameter of lens or mirror
- Focal length – distance from mirror/lens to focal point
- Focal ratio = focal length/diameter
 - Low focal ratio = short focal length, wide field of view (for example f/3)
 - Long focal ratio = long focal length, small field of view (for example f/16)
The Job of a telescope

- **To collect light!**
 - Your eye is actually a small telescope
 - Light collecting power is controlled by the iris which varies from 2mm (daytime) to 8mm (0.4 inches) (nighttime)
 - Focus can also be changed w/o knob
 - This 8mm telescope reveals several thousand stars from a dark site!

- **Increase angular resolution**
Key Property of all Telescopes

- **Light gathering power**
 - This is dependent on the area of the telescope lens/mirror.
 - Area = πr^2

- **How much light is collected?**
 - Comparing telescopes
 - $(\text{diameter telescope 1})^2/(\text{diameter telescope 2})^2$
 - Telescope with 2 times the diameter of another telescope has 4 times as much area
 - Telescope 10 times as large collects 100 times more light
How faint can different telescopes detect objects?

Astronomers classify brightness in terms of “magnitudes”

- It is not a linear system
- Relative system
 - Vega is designated magnitude = 0
- \(m_1 - m_2 = -2.5 \log (f_1/f_2) \)
The Magnitude System

- History of Magnitudes
 - Earliest astronomical catalog created by Hipparcos in late 2nd century BC.
 - Divided visible stars into 6 classes by brightness
 - Brightest star seen by eye – 1st magnitude
 - Faintest star seen by eye– 6th magnitude – limit of human perception.
 - Telescope (1600s) revealed fainter stars – early system inadequate.
 - William Herschel started the revisions
 - Finished by Norman Pogson in 1856
 - Logarithmic scale in terms of intensity
 - Originally Polaris assigned magnitude of 2, but Polaris is variable!
 - Modern fiddling- Switched to Vega → magnitude =0
 - \(m_1 - m_2 = -2.5 \log(f_1/f_2) \) \(f = \) flux or energy (units usually ergs cm2 sec-1)
 - The magnitude scale is relative – always compare one star with another.
 - Bright objects have negative magnitudes → Sirius is \(m=-1.4 \)
 - A fifth magnitude star is 2.5 times brighter than a 6th magnitude star
 - A change of 5 magnitudes = 100 times brightness
 - Magnitudes are wavelength dependent!

- There are two types of magnitudes:
 - Apparent magnitude – usually denoted with \(m \)
 - The brightness a star seems to be to us here on earth
 - Absolute magnitude – usually denoted with \(M \)
 - brightness that a star would have if it were placed 10 parsecs away.

- Magnitudes can be used to determine distance
 - \(M - m = -2.5\log(D/10)^2 \)
 - Distance modulus
 - \(M=m + 5 - 5 \log(D) \)
 - If you can determine \(M \) (by theoretical means??) you can solve for \(D \)
 - Sun’s absolute magnitude is 4.7
 - Sun’s apparent magnitude is -26
 - Faintest star detected now is \(~24th\) magnitude
 - Sirius is the brightest star in our sky \(m=-1.46 \)
Sirius

Sirius $m = -1.46$
Sirius B $m = 8.84$
HD 216932
apmag 9.1

HD 217121
apmag 8.7

65 Çybele
apmag 11.6

2009-09-21 08UT
Area of Telescope Lens/Mirror and Limiting Magnitudes

- What does this mean in terms of magnitudes for visual telescopes?
- Area = \(\pi r^2 \)
- Let’s say the eye has a diameter of 0.5 inches
- Your eye can see stars to 6\(^{th}\) magnitude
 - 2 inch telescope has 16 times the light gathering power as much as eye
 - Can see stars down to about 10\(^{th}\) magnitude
 - 4 inch telescope has 64 times as much as your eye
 - Can see stars down to about 12\(^{th}\) magnitude
 - 10 inch telescope has 400 times as much area
 - Can see stars down to about 14\(^{th}\) magnitude
 - 8 meter (8.7 yrds) telescope can see stars 2,000,000 fainter than your eye can see
 - Can see stars down to about 21\(^{st}\) magnitude

- Limiting magnitude
 \[M_{\text{limit}} = 16.8 + 5\log(D \times 10) \]
 D is telescope mirror diameter in meters
 Using a CCD instead of the eye will improve about 5 stellar magnitudes
Vega, Altair, Deneb

- Vega mag=0
- Distance= 25 lyrs
- Altair mag=0.77
- Distance = 17 lyrs
- Deneb mag=1.25
- Distance = 1500 lyrs

Which star is putting out the most energy?
Resolution

- The ability to separate the images of stars or other objects that are close together.
- Diffraction - the bending/spreading of waves when they strike a barrier or pass through an aperture. Wavelength dependent.
- $\Delta \Theta = (1.22)\lambda/D$ – for a circular aperture
 - 24 inch telescope – 0.2 arc seconds
 - Hubble Space telescope can resolve 0.05 seconds of arc

To improve resolution, increase size of telescope
Alberio

Alberio to your eye

380 light years away
Separated by 35 arcsec
Orbital period is at least 100000 years
Mag 3.1, 5.1
Ursa Major (Big Dipper) Test

Best estimate: Mizar and Alcor 1.1 lyr apart
83 lysrs away
Mizar mag=2.23, Alcor=3.99
Mizar A and B separated by 14 arcsec, corresponds to 340 AU
More about Resolution

- Telescopes are designed to form images as nearly perfect as the laws of physics allow.
- To form a sharp image, light waves from a distance source must meet at the focus of the telescope in phase. Need a good surface.
- Nothing is perfect, light waves arrive in almost perfect phase in a region surrounding the geometric point of focus.
- Light appears as small spot called the “Airy disk”.
- Best you can hope for is 84% total light inside disk, 16% in fringes.
- The pattern of light generated by a point source passing through a telescope is called the point spread function (PSF).

\[
\text{Airy} = 2.44 \frac{\lambda}{A} \text{ (radians)}
\]

\[
\text{Airy}_{\text{fwhm}} = 1.02 \frac{\lambda}{A} \text{ (radians)}
\]

Diameter sets limits on what telescope can see.
Matching Telescope Resolution and CCD Pixel Size

- Point Spread Function defines the smallest details to be seen in a telescope image.
- Sample size (pixel size) must be small enough to define the smallest details.
- Nyquist theorem – sampling frequency must be at least two times the highest frequency present in the original signal.
- Applied to image sampling, size of a pixel must be no larger than half the diameter of the PSF (diffraction disk).
- Images sampled with larger pixels are undersampled, some of details will be lost.
- Images samples with much more than two pixels across the core of the diffraction disk are oversampled.

\[2d_{\text{pixel}} = d_{\text{psf}} \]

\[F_{\text{min}} = A d_{\text{pixel}} / 0.51 \lambda \]
Point Spread Function (PSF)

- describes the response of a focused optical imaging system to a point source or point object.
HUBBLE SPACE TELESCOPE
FAINT OBJECT CAMERA
COMPARATIVE VIEWS OF A STAR

BEFORE COSTAR
AFTER COSTAR
JWST Point Spread Function

<table>
<thead>
<tr>
<th></th>
<th>F070W</th>
<th>F090W</th>
<th>F115W</th>
<th>F140M</th>
</tr>
</thead>
<tbody>
<tr>
<td>F150W</td>
<td>F150W2</td>
<td>F162M</td>
<td>F164N</td>
<td></td>
</tr>
<tr>
<td>F182M</td>
<td>F187N</td>
<td>F200W</td>
<td>F210M</td>
<td></td>
</tr>
<tr>
<td>F212N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Magnification

- Frequently hailed by commercial telescope makers but not really important.
- Depends on the eyepiece used
- Magnification = \(\frac{\text{focal length of primary lens or mirror}}{\text{focal length of eyepiece}} \)
- Galileo’s telescope magnified about 3 times
- Can make any telescope reach large magnifications, but do you get a useful image?
 - Magnification increases the apparent size of an image
 - Does not increase the total number of photons collected
- Minimum magnification = 4 \(\times \) primary diameter (in inches)
- Maximum magnification = 50 \(\times \) primary diameter (in inches)
Field of View

- Sky that can be seen through a telescope at any one time
- One degree is about twice the diameter of the moon.
- Field of view depends on the design of the optics and the detector.
- In general, telescopes with small focal ratios (f/3) have large fields of view. Large focal ratios mean small fields of view.
- Finder scopes have larger fields of view than the “main” telescope.
- Increasing magnification via eyepieces decreases field of view.
- The Alta CCD chip is 13.3x13.3 mm in size, and when attached to the 24 inch telescope at prime focus, gives a field of view of about half a degree (size of the moon).
- Finder scopes have larger field of view
“Seeing”

- Seeing is the quality of observing conditions induced by the earth’s atmosphere and the telescope’s environment.
- Low altitude effects
 - Areas of different density radiate energy at different rates.
 - Causes local convective currents.
 - Daily heating of the ground.
 - Buildings.
 - Telescope itself, if it is warmer than its environment.
- Mid-altitude – topography. It is not a good idea to build downwind of anything big.
- High Altitude – jet stream, etc.
Seeing and the Atmosphere

- Turbulence – short timescale variations in atmosphere.

Plane waves from distant point source

Turbulent layer in atmosphere

Perturbed wavefronts
Where to put an observatory?

- Places with stable atmospheres, like mountaintops high enough to be over any temperature inversion layers. Islands surrounded by oceans, where the prevailing winds have crossed many miles of ocean (laminar flow off the ocean).
- Also a major factor is unvarying weather patterns, dominated by high pressure systems. Areas outside these large high-pressure systems have more variable weather, and hence a more variable state of atmospheric stability.
- Dry environment
Review

- Light gathering power → area of lens/mirror.
 - magnitudes
- Resolution → ability to separate close objects
- Actual resolution of a telescope is limited by “seeing”
- “Seeing” is the apparent size of a point source like a star
- “Seeing” is dictated by the telescope’s conditions
 - Atmosphere?
 - Altitude in the sky
 - Water vapor
 - Dust
 - Environment of the telescope
 - scintillation
 - At Mt. Cuba – about 3-10 arc seconds
 - Chile – 0.5-1 arc second
- Magnification
- Field of View
Types of Telescopes
Three Types of Telescopes

- Refractor
- Reflector
- Catadioptric
Refraction

Diverging lens

Converging lens

Which would you use to construct a telescope?
Refracting Telescopes

- Has a lens at one end of the telescope
- Light passes through the lens and is refracted
- Lens brings light to a focus at the eyepiece
- Galileo’s telescope was a refractor.
Magnification is determined by the focal lengths of the primary lens or mirror and the eyepiece. The formula for magnification is:

\[
\text{Magnification} = \frac{F}{f}
\]

where \(F\) is the focal length of the primary lens or mirror, and \(f\) is the focal length of the eyepiece. Magnification can be adjusted by changing the eyepiece.
History of Refractors

- Earliest telescopes - Galileo
- Premier telescopes of the 1800s
- Technology peaked in 1887 with 40 inch Yerkes refractor (outside Chicago)
 - Issues:
 - Absorbed too much of the light passing through
 - Massive piece of glass sagged under its own weight
Galileo Galilei
Born in 1564, died 1642
Famously denounced for his views on the earth’s motion around the sun

Galileo’s telescope: a 30mm handheld Refractor
Focused by sliding eyepiece in and out
40 inch lens

Tube is 60 feet long and weighs 6 tons
Disadvantages

• Size
• This is about the largest solid glass body that can be supported on its edge without deforming under its own weight.
• The volume of the lens must be good.

40 inch refractor built in 1892
Disadvantages of Refractors

- Chromatic aberration – light of different wavelengths is bent differently by the lens!
- Different focuses for different colors!
- Your eye suffers from this problem, plus inverted image!
Reflecting Telescopes
Reflecting Telescopes

Want to use mirror to collect and focus light – so can’t use a plane mirror – use a curved mirror (concave)
Angle of incidence = angle of reflection
Center of curvature
Reflectors

Use mirrors rather than lenses
• Mirrors are usually parabolic, not flat, to help bring the light to a focus.
• Mirrors have the advantage of being supported from behind.
• Light does not pass through mirrors, so no chromatic aberrations. Mirrors began to replace lenses in larger telescopes.
• Use of second reflection can make tubes shorter.
• Early mirrors were metal – tarnished quickly, hard to polish because you changed the shape of the mirror. This is the reason the earliest telescopes were refractors. It was very hard to shape metal to the tolerances needed for reflecting telescopes.
• Later – started using glass with thin silver coating. Tarnished as well, but could be polished by replacing the silver.
• Today use different kinds of high tech coatings and lens materials.
Problems with Reflectors

- Mirror maintenance
- Reflect light back in direction it came from
- Tarnish
- Optical problems
 - Spherical Aberration
 - Coma
 - Where do you look?
Spherical Aberration

Hubble Space Telescope is an example of this!
Spherical Aberration

To correct spherical aberration, give your mirror a parabolic shape.
Spherical Aberration and Coma

- Using a parabolic mirror introduces a new aberration called coma.
- Coma affects objects away from the central optical axis (off axis).
- Caused by incoming photons that are not parallel to the parabolic axis.
- Severity is proportional to D^2 inversely proportional to focal ratio.
Coma
MCAO 24 inch coma
Types of Reflectors

Newtonian Telescope - earliest design
• 1668 – Isaac Newton built the first one
• Mirror 1.3 inches, magnification 35 times
• Mirror from speculum metal –
 • an alloy of copper and tin –
 • Newton added arsenic for “whiteness”
• Reflected only 16% of light
• Tarnished easily
Newton’s 1668 Telescope
Herschel 1.2 m reflector (1789)

• William Herschel was a musician with no astronomical training.
• Herschel’s discovery of Uranus began serious quest for larger Telescopes
• Between 1773 and 1795
 • William Herschel made 430 mirrors – metal
• Largest 1.2 m
 • Was the largest telescope for 50 years.
 • Never lived up to potential
 • Mirror warped under weight
 • Two mirrors were cast
 • Took hours to cool down
 • Not a Newtonian – the primary mirror was tilted so you could see the image by while standing in front of the telescope.
Herschel’s 1.2m (40”) Telescope

- First Observation Feb 19, 1787
- “The apparatus for the 40-foot telescope was by this time so far completed that I could put the mirror into the tube and direct it to a celestial object; but having no eye-glass fixed, not being acquainted with the focal length which was to be tried, I went into the tube, and laying down near the mouth of it I held the eye-glass in my hand, and soon found the place of the focus. The object I viewed was the nebula in the belt of Orion, and I found the figure of the mirror, though far from perfect, better than I had expected. It showed four small stars in the nebula and many more. The nebula was extremely bright.”
 Herschel, 1787
Herschel’s Telescope

Image taken in 1839 by Herschel’s son, John.

Telescope’s first mirror on display in the Science Museum in London.
The Leviathan of Parsontown

- Built in 1842
 - 4 tons of molten metal
 - Took 16 weeks to cool
 - 1st attempt broke right before installation

- 72 inches
- First really good, large reflecting telescope
- Discovered Neptune's moon Triton
- Discovered Uranus's moons Ariel and Umbriel
The Leviathan
The Leviathan
Cassegrain Reflector

24 inch telescope

- 1672 – Frenchman Guillaume Cassegrain produced the first
Catadioptric

Schmidt Cassegrain –
Uses both lenses and mirrors. Uses spherical mirror, with correcting lens at center of curvature.
Telescopes today

- Refractors still used by amateurs
 - Simple design
 - Easy to use
 - Great for planets, the moon, and resolving binary stars.
 - No obstruction from a secondary mirror or diagonal.
 - Have evolved from small, manually pointed objects to sophisticated, computer controlled instrument.

- Reflectors are used in modern telescopes.

- Telescopes for all wavelengths of light!
Review of Telescopes/Properties

- Basic Terminology – aperture, focal length, focal ratio
- Properties dependent on size of the telescope
 - Light Gathering Ability
 - Magnitude system
 - Resolution
 - Seeing – atmospheric turbulence
- Other Properties
 - Field of View – f/ratio
 - Magnification – focal length/eyepiece focal length
Review of Telescopes

- Types of telescopes
 - Refractor – earliest
 - Reflector
 - Newtonian
 - Cassegrain
 - Earliest – metal mirrors (1750s)
 - Glass mirrors – 1850s
 - Catadioptric

- Optical problems
 - Chromatic aberration
 - Lens size/thickness
 - Spherical aberration
 - Coma

- Modern telescopes
Modern Astronomical Telescopes

Major observatories: Hawaii, Chile, Texas, Canary Islands, Arizona, Australia, California, South Africa, China

Typical structure: Telescope housed inside large dome with slit that opens.
Silver Coated Mirrors

- 1856 – German chemist Justus von Liebig found he could use a mixture of silver nitrate, caustic potash, ammonia and sugar to deposit a reflective silver film onto a glass plate.
- Leon Foucault (Paris), Carl August von Steinheil (Munich) applied the process to create silvered glass telescope mirrors.
- Silvered glass advantages
 - Lighter
 - Less brittle
 - More reflective
 - Easier to make
 - Easier to maintain
- Henry Draper – 1864 – “On the Construction and Use of a Silvered Glass Telescope” was standard instruction book
5 meter Hale telescope

The mount needed to support this monster is itself quite large. It is an equatorial mount, one axis is aligned with the rotation axis of the earth, like the telescopes upstairs.

- uses the largest single piece of glass possible to still have a good mirror. Monolithic. Anything larger will deform under its own weight.
 - 200 inch pyrex primary mirror. Weighs 14.5 tons (just the mirror). 20 tons total.
 - Pyrex was favored material until about 30 years ago – low thermal expansion
- The tube of the telescope is 60 ft. long.
- The telescope was built (1947) before the age of lightweight materials.
- The whole telescope weighs 500 tons.
History of Palomar

- George Ellery Hale – ardent proponent of the “new astrophysics”
- Faculty at University of Chicago 1892
- Secured money for 40 inch Yerkes refractor
- Secured funding for 60 inch and 100 inch telescopes at Mount Wilson in California (1908)
- All happened around the time that Edwin Hubble was measuring distance to galaxies for the first time. He wanted a bigger telescope.
Problems

- Hale telescope is about largest mirror that can be constructed from Pyrex and not deform under its own weight
 - Mechanical rigidity
- Thickness of mirror proportional to cube of the diameter
- Weight of a solid mirror proportional to D^5!
- Expensive and impractical
- Two approaches to reducing weight
 - Thin mirrors
 - Honeycomb mirrors
The view from Palomar Mountain
January, 2006
The MMT

Mt. Hopkins, 30 miles south of Tucson, AZ
The MMT was a telescope built before its time.

- Built in the 1980s.
- It revolutionized the idea of making telescopes.
- It was a 6 meter telescope, which means the primary mirror was 6 meters in diameter.
- But the mirror was not solid. It was constructed from 6 separate 1 meter mirrors. They were combined together to function as one mirror.
- Equivalent to 4.4m in area, but cost only 1/3 as much.
- It was ahead of its time because technology was not quite up to keeping the mirror segments aligned.

- Need precise alignment to maintain a good focus.
 - Wavelength of light $\sim 5000 \, \text{Å} \ (5 \times 10^{-7} \, \text{m})$
- This is done by using “actuators”, or small pistons, mounted behind each telescope mirror to push and pull on it.
- the MMT worked, but the not well.
Multiple Mirrors
MMT after

Refitted with a single 6.5 meter thin mirror - 2000
The Keck Telescopes

Primary mirror for each is 10 meters (33 ft) in diameter.
Light Path — Keck Telescope diagram shows the path of incoming starlight (1), first on its way to the primary mirror; reflected off the primary, toward the secondary mirror (2); bouncing off the secondary, back down toward the tertiary mirror (3); and finally reflected either off the tertiary mirror to an instrument at the Nasmyth focus (4), or to the Cassegrain focus (5) beneath the primary mirror.
The Keck Mirrors

- Mirror is made of 36 individual lightweight segments.
 - Each segment is 1.8 m wide, 75 mm (3 inches) thick.
 - Made of “Zerodur”, artificial material with low thermal expansion.
 - Ceramic material.
 - Each segment is so smooth that if it were to the width of the earth, the highest mountain would be 3 feet high.
 - In other words, accurate to 1000th the width of human hair.
 - System of motors keep the mirrors aligned – active optics.
Mirror Support

168 electronic sensors mounted on the edges of the mirror segments. 3 actuators per segment. Sensors compare height difference between each segment. Actuators move accordingly. Aligned two times a second.
More facts about Keck

- Total mirror weight is just 14.4 tons.
- The mount is an alt/az mount, which means that it is not aligned with the rotational axis of the earth.
 - Mount weighs 270 tons.
 - Made of steel because it is important to be nonflexible.
 - Alt/Az mounts are cheaper to make the equatorial.
 - But are also more difficult to control.
- They go through some effort to maintain temperature equilibrium.
 - Important for seeing. If the telescope is hotter than the surroundings, it radiates energy, heats the surrounding air and makes the images seem to boil.
 - Chill the interior of both Keck domes.
 - Prevents temperature deformation of the mirror
 - Kept at or below freezing (not such a big deal at Mauna Kea).
 - Each dome has 700,000 cubic feet of air. The air is totally replaced every 5 minutes.
The Very Large Telescope (VLT)

- Located in Chile, in the southern hemisphere
- Is actually a system of 4 telescopes that can work together
VLT Today
The VLT

- Four 8.2 meter telescopes
- Each telescope can be used separately or combined into one telescope (interferometry)
 - Light-collecting ability which is proportional to its area.
 - Mirror’s ability to resolve detail. This is proportional to its diameter.
- If one removes pieces from a hypothetical 16 m mirror, one reduces its light collecting ability, but not necessarily its resolution.
- So if you use two telescopes separated by some distance, you can get the resolution of one big telescope.
- Alt/Az mount as well (big telescopes are).
- Primary mirror is 8.2m (600 inches) wide and 80 mm thick. Made of Zerodur.
- Mirror weighs 50 tons
- Secondary mirror is 1.1 meters made of beryllium.
- Weigh 42 kg.
Spiral Galaxy Messier 83
(FORS / VLT)

ESO PR Photo 24b/05 (August 10, 2005)
VIMOS Image of the Antennae Galaxies NGC 4038/39
(VLT MELIPAL + VIMOS)

ESO PR Photo 09a/02 (13 March 2002) © European Southern Observatory
The Pluto-Charon System (NACO/VLT)
The First Image of an Extra Solar Planet?
Gemini – The Twins
Another example of a large telescope is Gemini.

2 8.1 m telescopes, one in Hawaii and one in Chile.

Main mirrors are single pieces of glass.
- Honeycombed – material removed from behind
- Hexagonal blocks that have been fused in a special furnace – spin casting. The entire furnace, containing the mould, rotates so that the surface forms a parabola.
- Keeps spinning as furnace cools.
- 20 cm thick.
- Very accurate polishing.

Secondary mirrors formed same way
- 1 meter
- Supporting ribs 3mm wide
- Weigh 50 kg

Because the mirror is so thin, it is prone to deformation.
- Complex mirror cell system of 120 actuators which push and pull parts of the mirror every few minutes.
Gemini Mirror
Mirror Polishing
Housekeeping at Gemini
Gemini Dome
Gemini Images
Subaru Telescope

- 8.2 meter telescope
- Main mirror is 30 cm thick.
- Took three years to produce the piece of glass this mirror came from and another 4 years to produce a finished mirror.
- Uses 261 actuators to maintain mirror shape
- One unique aspect – it has a magnetic drive. Most telescopes use a system of gears.
- Unique dome designed to reduce turbulence.
 - Cylinder rather than a hemisphere
 - Prevents warm/turbulent air from entering from the outside
Subaru Mirror
Subaru Dome
Telescopes of the Future

Thirty Meter Telescope - Hawaii

Giant Magellan Telescope - Chile

LSST - Chile
European ELT

- 39 meter (128 ft) telescope
- 798 segments in mirror
- Construction began in 2017 – finish 2024
Construction of ELT
Panoramic Web Cam

ELT Interactive Webcam
ELT Mirror
Advanced Adaptive Optics

High powered lasers will generate 6-8 artificial stars. These stars will be used to monitor the effects of the atmosphere.
Special computers on the ELT, called adaptive optics real-time computers, will use the signals advanced wavefront sensing cameras to calculate how mirrors like M4 need to be deformed to correct for distortions caused by turbulence in the Earth’s atmosphere. This is just the main deformable mirror. ELT’s adaptive optics will include several different systems.
The Giant Magellenen Telescope
Construction Site
Giant Magellen Telescope Mirror

7 Mirror Segments – each 8.4m combined for 25 m total aperture
Creating the Mold for a Segment
Furnace Lid Closing
The Finished Product
General Optical Design
High Tech Dome

- Designed to disappear at night.
- Can complete a revolution in 3 minutes
Vera Rubin Telescope

Cerro Pachón – Future site of the LSST

• 8.4 m mirror (27 ft)
• 3200 megapixel camera
Telescope Mount Assembly
Calibration telescope
8.4 meter primary mirror
LSST Telescope
Shipped to Chile in 2019
5 meter secondary mirror
The Camera

- Largest camera ever constructed (5.5x9.8ft)
- Weight 6200 lbs
- Sensitive 0.3 – 1 micron in wavelength
- Image surface is 25 inches
- 189 16 megapixel detectors
- 3.2 gigapixels
- Displaying one full sky image required 1500 HD TV displays
Detector Size
Filters
LSST Output

- 6 million gigabytes per year
- Equivalent to 800,000 images with a “normal” 8 megapixel camera.
- Final raw image archive – 60 Petabytes
- Bandwidth at the observatory – 600 gigabytes per second
- 10 million alerts per night (things that change)
- 11 official data releases
- 5.5 million total images
- First data release – 350 billion sources
- DR11 – 7 trillion sources
Other Amazing Telescopes!
Hubble Space Telescope
Hubble Space Telescope

- Actually a small telescope – 2.4 meters
- Big advantage – It is above the atmosphere! Excellent seeing!
- Disadvantage – very expensive
Cone Nebula

Hubble Space Telescope • Advanced Camera for Surveys

NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team and ESA • STScI-PRC02-11b
Tadpole Galaxy • UGC 10214
Hubble Space Telescope • Advanced Camera for Surveys

NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. Clampin (STScI), G. Hartig (STScI),
the ACS Science Team and ESA • STScI-PRC02-11a
- 342 separate images
- 100 hrs total exposure
Hubble extreme Deep Field

- Compiled 10 years of images taken 2003-2004
- Center of Hubble Ultra Deep Field
- Field of view is a tiny fraction of the size of the Moon.
- Contains about 5000 galaxies.
Size of Hubble eXtreme Deep Field on the Sky

Digitized Sky Survey (ground-based image) for comparison
• Atacama Large Millimeter/Submillimeter array
 • Altitude is 16570 ft.
 • Atacama desert is one of the driest places on Earth.
• Most of the light comes from very cold objects like large clouds in space
• 66 high precision antennas
 • Main array is 50 antennas, each 12 m in diameter
• Telescopes act together as a single instrument
 • Can be arranged in different configurations
 • Can be spread over a distance as large as 16 kilometers
ALMA Observations of Jupiter

- ALMA peers 50 km below the visible cloud deck
- Bright regions show ammonia gas disruptions associated with visible storm in one of Jupiter’s belts.
Alma and Solar Systems
ALMA and Solar Systems

- HD 169142
 - Interpreted as single 10x Earth mass planet that is migrating inward, disturbing the disk and creating multiple thin rings.

HL Tau
ALMA and the Center of the Milky Way

- Clouds of carbon monoxide
- 26,000 light years away
- Orbiting about 1 light year from the black hole (red circle)
ALMA and Other Galaxies

- Center of galaxy NGC 5643
- Seyfert galaxy
 - Bright central regions
 - Black hole believed to be accreting
- This image shows energetic ionized gas flowing out from the center of the galaxy
- Image combines ALMA and VLT images
- Spiral rotating disk (red) of carbon monoxide
- Outflowing gas traced by ionized oxygen and hydrogen (orange and blue)
Chandra X-Ray Telescope

Visible Light
How an X-Ray telescope works
Centaurus A
More Centaurus A
Radio (480 MHz), Atomic Hydrogen, Radio (2.4 GHz), Molecular Hydrogen, Mid-IR 1, Mid-IR2, Optical, x-rays, gamma rays.
M31 in X-Rays
James Webb Space Telescope
The Launch of JWST
JWST Orbit
The JWST Main Mirror
JWST Mirror Facts

- The mirror is made up of 18 hexagonal mirror segments
 - Each segment is 1.32 m in diameter
 - Why a hexagon? → can approximate a circular shape
- Total diameter is 6.5 meters
- The secondary mirror is meters
- The segments are made of beryllium
 - Holds its shape well at very cold temperatures
 - Is a lightweight but strong metal
 - Is not magnetic
 - The beryllium was mined in Utah
 - Each segment weighs only 20 kg (46 lbs)
 - Weighs 1/10th the weight of HST’s mirror
How the Mirror Segments are Made

- **Mirror Blanks**
Mirrors were polished and tested at cryogenic temperatures (-400 F) in California and Alabama.
Mirror Coating

- Gold is used because it reflects infrared light very well.
- 1000 Å thick
- Thin layer of glass is put on top of the gold to protect it (gold is very soft).
The Secondary Mirror
The Sun Shield
Sun Shield Facts

- 5 layers
- Size of a tennis court
- Will allow telescope to cool below 50 K (-370 F)
- Will always be between the Sun and the Telescope
- Each layer must be separated from the other layers
- Outer layer is 0.05 mm thick, other layers are 0.025 mm
- Each layer is cooler than the one below
 - Sun facing side is 383 K (230 F)
 - Side closest to the telescope is 36 K (-394 F)
- The Sun shield is made of Kapton
 - Developed by DuPont in the 1960s
 - Each layer is coated with aluminum
 - The outer layers are also coated with doped silicon for electrical properties.
Sunscreen Seams

Sunscreen deployment test
The Sun Screen

- Sunscreen deployment test
Where are the Instruments?
The Instruments

- Near-Infrared Camera, or NIRCam - provided by the University of Arizona
- Near-Infrared Spectrograph, or NIRSpec - provided by ESA, with components provided by NASA/GSFC.
- Mid-Infrared Instrument, or MIRI - provided by the European Consortium with the European Space Agency (ESA), and by the NASA Jet Propulsion Laboratory (JPL)
- Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph, or FGS/NIRISS - provided by the Canadian Space Agency
Into Space!
ARIANE 5 LAUNCHER

Fairing (RUAG Schweiz AG)
- Height: 17 m.
- Mass: 2.4 t.

Vehicle equipment bay
- Height: 1.13 m.
- Mass: 1,100 kg.

HM-7B engine
- Thrust: 67 kN. (in vacuum)
- 995 sec. of propulsion

EPC – Cryogenic main stage
- Height: 31 m.
- Mass: 190 t.

Vulcain 2 engine
- Thrust: 1,410 kN. (in vacuum)
- 520 sec. of propulsion

Satellite Webb Space Telescope

PAS – Payload adaptor (RUAG)
- Mass: 99 kg.

ESC-D – Cryotechnic upper stage
- Height: 4.71 m.
- Mass: 19 t.

EAP – Solid rocket boosters
- Height: 31.6 m.
- Mass: 277 t.

MPS – Solid rocket motor
- Average thrust: 5,060 kN.
- Max thrust: 7,080 kN. (in vacuum)
- 133 sec. of propulsion

13,000 kN. at liftoff (at T+7.3 sec)
Folded Up for Rocket
JWST Deployment

- Video
Interacting Antennae Galaxies

NASA / JPL-Caltech / Z. Wang (Harvard-Smithsonian CfA)

Spitzer Space Telescope • IRAC

Visible: M. Rushing / NOAA
ssc2004-14a
Sofia Infrared Telescope
Red: Carbon Monoxide molecules
Green: Carbon atoms and Ions

Credit: NASA/SOFIA
W51A: star forming region in Milky Way. Red 70 microns, green 37 microns, blue 20 microns. Spitzer image is shown in white. (Credit: NASA)
Planet hunter

NASA’s Transiting Exoplanet Survey Satellite (TESS)

Launch:
Falcon 9 (Space X)

Four cameras each with **16.8 megapixel detector**

Mission
- Monitor more than **200,000 stars**
- Discover **20,000 new planets**
- Can sweep the entire sky in **two years**

Designed to replace the Kepler telescope in orbit since 2009

Cost
$337 million

Transiting observation method of discovering planets

- Repeated, periodic drops in light can reveal a planet’s existence
- The method makes it possible to determine a planet’s size, mass, orbit and form (solid or gaseous)

Source: NASA
GAIA- Global Astrometric Interferometer for Astrophysics
GAIA

- Very accurately measure the motions of over 1 billion stars (only 1 percent of all stars in the Milky Way).
- Create a precise 3 dimensional map of the Milky Way
- 7 years in space
- 1800 million objects measured
GAIA EARLY DATA RELEASE 3

1 811 709 771 stellar positions
1 806 254 432 brightness in white light
1 467 744 818 parallax and proper motions
1 614 173 extragalactic sources
1 542 033 472 brightness in blue light
1 540 770 489 colour
1 554 997 939 brightness in red light

#SpaceCare #ExploreFurther
In each case, foreground galaxies bend the light from the distant quasar, creating multiple images of the same quasar. These are called “Einstein crosses”. Credit: ESO
Telescopes in Radio
Saturn in Radio
Wilkinson Microwave Observatory
What is the Background Radiation?

- Discovered in 1964 Penzias and Wilson
 - Looking for source of noise from their radio telescope
 - 1% of static on television is due to background radiation
- Blackbody radiation
 - $T=2.76 \, \text{K}$
 - Isotropic
- Comes from the early universe, about 300,000 yrs after Big Bang
 - Today radiation travels freely – universe is transparent
 - Earlier, universe was filled with radiation, and hydrogen plasma
 - Density was high enough so any radiation barely travelled any distance before being absorbed and reemitted.
 - Matter and radiation in thermal contact – temperatures were identical
 - Thermalization.
 - As universe expanded, density lessened and temperature dropped.
 - Universe became transparent.
 - Matter recombined – electrons and protons formed hydrogen atoms.
 - This happened at about 3000 K, background radiation was released at this point
Non-photon Telescopes
Laser Interferometry Gravitational Wave Observatories
1. Laser light is sent into the instrument to measure changes in the length of the two arms.

2. A “beam splitter” splits the light and sends out two identical beams along the 4 km long arms.

3. The light waves bounce and return.

4. A gravitational wave affects the interferometer’s arms differently: when one extends the other contracts as they are passed by the peaks and troughs of the gravitational waves.

5. Normally, the light returns unchanged to the beam splitter from both arms and the light waves cancel each other out.

6. If the arms are disturbed by a gravitational wave, the light waves will have travelled different distances. Light then escapes through the splitter and hits the detector.

Illustration: ©Johan Jarnestad/The Royal Swedish Academy of Sciences
Neutrino Telescopes

IceCube Laboratory
Data is collected here and sent by satellite to the data warehouse at UW–Madison

Digital Optical Module (DOM)
5,160 DOMs deployed in the ice

IceTop
86 strings of DOMs, set 125 meters apart

1450 m

DeepCore
60 DOMs on each string
DOMs are 17 meters apart

2450 m

Antarctic bedrock

Amundsen–Scott South Pole Station, Antarctica
A National Science Foundation-managed research facility
Ice Cube
Super Kamiokande Neutrino Telescope
Antares Neutrino Telescope
Cosmic and Gamma Ray Telescopes

Measuring cosmic-ray and gamma-ray air showers

- First interaction (usually several 10 km high)
- Air shower evolves (particles are created and most of them later stop or decay)

Measurement of Cherenkov light with telescopes
Measurement with scintillation counters
Measurement of low-energy muons with scintillation or tracking detectors
Measurement of high-energy muons deep underground
Veritas