PHYS 812: Assignment 6

1. Demonstrate that the Schrödinger equation is gauge invariant. Start from the Hamiltonian H for a particle in the electromagnetic field defined by some arbitrary potentials A and ϕ.

 (a) Write down H_A, the Hamiltonian obtained by gauge transforming the potentials A and ϕ into: $A' = A - \nabla \Lambda$ and $\phi' = \phi + (1/c) \partial \Lambda / \partial t$, where $\Lambda(r, t)$ is an arbitrary real function.

 (b) Show that if $\psi(r, t)$ is a solution to Schrödinger’s equation with the Hamiltonian H, then $\psi_A = e^{-i\eta \Lambda / \hbar} \psi$ is the corresponding solution after the gauge transformation, i.e., it contains the same physical information.

2. Consider the photoelectric effect for the hydrogen atom and hydrogen-like ions initially in the ground state.

 (a) For hydrogen atom, estimate the photoelectric cross-section σ when the ejected electron has a kinetic energy of 10 Ry. Compare it to the atom’s geometric cross-section of about πa_0^2.

 (b) For an ion of charge Z, show that σ is proportional to Z^5 in the limit of $p_f a_0 / (Z \hbar) \gg 1$.

3. Consider the classical Hamiltonian of the electromagnetic field

 $$\mathcal{H} = \frac{1}{8\pi} \int \left(|E|^2 + |B|^2 \right) d^3 r$$

 where E and B are the electric and magnetic field, respectively. For the field with no sources and in gauge $\phi = 0$, \mathcal{H} can be written as

 $$\mathcal{H} = \frac{1}{8\pi c^2} \int \left(|\dot{A}|^2 + c^2 |\nabla \times A|^2 \right) d^3 r$$

 where A is the vector potential and c is the speed of light. Show that if the vector potential is expressed in the form

 $$A(r, t) = \sum_{\lambda=1}^{2} \int \sqrt{\frac{e^2}{4\pi^2 \omega}} \left[a_{\lambda}(k) \hat{e}_\lambda(k) e^{i(k \cdot r - \omega t)} + a_{\lambda}^*(k) \hat{e}_\lambda(k) e^{-i(k \cdot r - \omega t)} \right] d^3 k$$

 where k is the wave vector, ω is the angular frequency of the field, $\omega = kc$, and $\hat{e}_\lambda(k)$ are unit vectors ($a_3 = 0$ by assumption), the Hamiltonian becomes

 $$\mathcal{H} = \sum_{\lambda=1}^{2} \int \omega [a_{\lambda}^*(k) a_{\lambda}(k)] d^3 k.$$
which is non-Hermitian. Thus, one has to first symmetrize \mathcal{H} and then make the substitution.

The resulting Hermitian Hamiltonian can be reduced to the form

$$ H = \sum_{\lambda=1}^{2} \int \hbar \omega \left[\alpha^{\dagger}_\lambda(k) \alpha_\lambda(k) + \frac{1}{2} \right] d^3k. $$

by using the commutation relation for the creation and annihilation operators: $[a_\lambda(k), a^{\dagger}_{\lambda'}(k')] = \delta_{\lambda,\lambda'} \delta^{(3)}(k - k')$. However, this commutation relation cannot be used in the final expression for \mathcal{H} (from the previous problem) since it has been integrated over k'.

(a) One may think that the problem can be solved by starting from an earlier equation in the derivation of \mathcal{H}, before the integration over k'. Try this approach and show that it leads to an expression containing the square of the Dirac delta function, which is not a well-defined quantity.

(b) To solve this paradox, use a discrete approach, i.e., represent the vector potential in the form:

$$ A(r) = c \sqrt{\frac{2\pi}{V}} \sum_{\lambda=1}^{2} \sum_{k} \frac{1}{\omega} \left[a_\lambda(k) \hat{e}_\lambda(k) e^{ik \cdot r} + a^{\dagger}_\lambda(k) \hat{e}_\lambda(k) e^{-ik \cdot r} \right] $$

with each component of k going over a set of discrete values $k_i = \frac{2\pi n_i}{L}, \; i = x, y, z, n_i = 0, \pm 1, \pm 2, \ldots$.

5. Let us denote the operator which creates [annihilates] a photon of momentum $\hbar k$ and polarization λ ($\lambda = 1$ or 2) by $a^{\dagger}(k\lambda)$ [$a(k\lambda)$]. Using the commutation rule for these operators $[a(k\lambda), a^{\dagger}(k'\lambda')] = \delta_{\lambda,\lambda'} \delta^{(3)}(k - k')$

(all the other commutators are zero)

(a) Show that the states created are eigenstates of the field Hamiltonian

$$ H = \sum_{\lambda} \int \left[a^{\dagger}(k\lambda) a(k\lambda) + \frac{1}{2} \right] \hbar \omega \; d^3k $$

where $\omega = kc$.

(b) Find normalization of these states.

(c) Show that photons are bosons.