1. (a) Define a conservative force field in terms of the properties of the work integral between two arbitrary points \(r_1 \) and \(r_2 \).

(b) Show that if a force field is expressible as a minus gradient of a scalar function, \(F = -\nabla U(r) \), then the work integral over a closed path is zero: \(\oint F \cdot dr = 0 \).

(c) Show that the theorem formulated in (b) implies that if \(F = -\nabla U(r) \), then \(F \) is conservative.

2. Consider a rigid body rotating with an angular velocity \(\omega \) about a fixed axis. Take the axis of rotation to be the \(z \) axis and use cylindrical coordinate system.

(a) Show that the linear velocity of a point within the body is \(\rho \alpha \omega \) in the direction of the unit vector \(\hat{\phi} \), where \(\rho \alpha \) is the cylindrical radius of this point.

(b) Now connect a small mass \(dm_\alpha \) with this point. Show that the \(z \) component of the angular momentum \(L_\alpha \) of this mass is \((l_\alpha)_z = dm_\alpha \rho_\alpha^2 \omega \).

Hint: In cylindrical coordinates \(r = \rho \hat{\rho} + z \hat{z} \).

(c) Show that the \(z \) component of the total angular momentum of the body can be written as \(L_z = I \omega \), where \(I \) is the moment of inertia of the body about the \(z \) axis: \(I = \int \rho^2 dm \) (\(\rho \) here is still the cylindrical radius, i.e., the distance of \(dm \) from \(z \)).

3. A simple pendulum consists of a mass \(m \) suspended from a fixed point in Earth’s gravitational field (acceleration \(g \)) by a weightless rigid rod of length \(l \). The pendulum moves in a viscous medium with retarding force \(-2m \sqrt{g/l} v \), where \(v \) is the velocity.

(a) Write down the equation of motion and then an approximation to it in the limit of small oscillations (\(\text{Hint: } \sin x \approx x \) for small \(x \)).

(b) Solve the approximate equation of motion.

(c) What kind of motion will one observe for this particular combination of the natural oscillator frequency and the given retarding force?