Physics 207: Lecture 27

Announcements

• Make-up labs are this week
• Final hwk assigned this week, final quiz next week
• Review session on Thursday May 19, 2:30 – 4:00pm, Here

Today's Agenda

• Statics recap
 ⇐Beam & Strings
 » What if a string breaks?
• Hinged Beams
• Angular Momentum:
 ⇐Definitions & Derivations
 ⇐What does it mean?
• Rotation about a fixed axis
 ⇐\(L = I \omega \)
 ⇐Example: Two disks
 ⇐Student on rotating stool

Exam 3 Results

• Average score ~ 54.4%; Median ~ 53%

A 16 percentage point curve will be applied to this exam
Statics Review:

- In general, we can use the two equations
 \[\sum F = 0 \quad \sum \tau = 0 \]
 to solve any statics problem.

- When choosing axes about which to calculate torque, we can be clever and make the problem easy!!

Lecture 27, Act 1
Statics

- In which of the static cases shown below is the tension in the supporting wire bigger? In both cases \(M \) is the same, and the blue strut is massless.

 (a) case 1 (b) case 2 (c) same

![Diagram](image-url)
Lecture 27, Act 1
Solution

- Consider the torque about the hinge between the strut & the wall:

\[\tau_{\text{total}} = MgL - T_1 \sin(30^\circ) L = 0 \]

due to gravity
due to wire

\[MgL = \frac{T_1}{2} \]

\[T_1 = 2Mg \]

does not depend on length of massless beam!

Lecture 27, Act 1
Solution

- The tension is the same in both cases.
Review: Beam and Strings

- Previously we solved for the tensions in the strings in the following problem:

![Diagram of a beam with tensions T1 and T2, masses M1 and M2, and a string breaking]

\[
T_1 = \frac{1}{3} Mg \\
T_2 = \frac{2}{3} Mg
\]

- But what if a string breaks...

Beam and Strings...

- If the left string breaks, what is the initial acceleration of the CM?
 🔄 The beam will rotate about the axis at A.

- Using \(F = ma \) in the y direction:
 🔄 \(Mg - T = Ma \)

- Figure out \(I \) about A:
 🔄 \(I = I_{CM} + Md^2 \).

- Recall \(I_{CM} = \frac{1}{12} ML^2 \)
 🔄 \(I = M\left(\frac{L^2}{12} + d^2\right) \)
Beam and Strings...

- Figure out τ about A:
 $$\tau = Mgd$$
- Now use $\tau = I\alpha$ and $a = \alpha d$

$$Mgd = M \left(\frac{L^2}{12} + d^2 \right) \frac{a}{d}$$

Hinged Beams:

- Consider a structure made from two beams, attached to each other and the wall with hinges:
What we want to find:
\((A_x, A_y)\) and \((B_x, B_y)\).

What we know:
Any forces present at C will act in pairs, and will therefore cancel if we consider the entire structure.

First use \(F_{\text{NET}} = ma\) in \(x\) and \(y\) directions:

\[
\begin{align*}
 x \quad A_x + B_x &= 0 \quad \iff \quad A_x &= -B_x \\
 y \quad A_y + B_y &= (m_1 + m_2)g
\end{align*}
\]

That's two equations, but we have four unknowns...
Hinged Beams...

- Now use some torque relationships.
 - First, consider the torque on the whole structure about an axis though the hinge at B.

$$\frac{L}{2}m_1g + \frac{L}{2}m_2g - L\tan \phi A_x = 0$$

$$\frac{L}{2}g(m_1 + m_2) = L\tan \phi A_x$$

$$A_x = \frac{g(m_1 + m_2)}{2\tan \phi} \quad (c)$$

(No torques from forces at C)

Hinged Beams...

- If we knew something about A_y or B_y we would be done!
 - Do the simplest thing we can think of!
 - Consider the torque on the bottom beam about an axis through C:

$$LB_y - \frac{L}{2}m_1g = 0$$

$$B_y = \frac{m_1g}{2} \quad (d)$$
Hinged Beams...

- So we have the following equations:

(a) \(A_x = -B_x \)

(b) \(A_y + B_y = (m_1 + m_2)g \)

(c) \(A_x = \frac{g(m_1 + m_2)}{2\tan \phi} \)

(d) \(B_y = \frac{m_1 g}{2} \)

And we solve these to get:

\[
\begin{align*}
A_x &= \frac{g(m_1 + m_2)}{2\tan \phi} \\
A_y &= \left(\frac{1}{2} m_1 + m_2\right)g \\
B_x &= \frac{g(m_1 + m_2)}{2\tan \phi} \\
B_y &= \frac{m_1 g}{2}
\end{align*}
\]
More on Stability:

- Consider a truck moving a refrigerator of mass M. The CM of the fridge is a height h above the bed of the truck and the width of the fridge is $2w$. If the truck is on a horizontal road, what is the maximum acceleration a_M that the truck can have without tipping the fridge? (Assume the fridge does not slip).

![Diagram of truck and refrigerator]

Fridge...

- Suppose the truck’s acceleration a is such that the fridge is just starting to tip. In this case the weight of the fridge is supported by a normal force acting only at the back corner.
- There must also be a frictional force acting to keep the fridge accelerating:
Fridge...

- Since the fridge is not rotating, the sum of all the torques about an axis through the CM must be zero.

\[\sum \text{torques} = 0 \]

\[Mgw = Mah \]

\[a = g \frac{w}{h} \]

Since the torque due to the normal force can't be any bigger, if we increased the acceleration, the net torque would be non-zero, and the fridge would flip.

\[F = Ma_m \]

This must be the maximum allowable acceleration!
Lecture 27, Act 2
Rotations

- A girl is riding on the outside edge of a merry-go-round turning with constant ω. She holds a ball at rest in her hand and releases it. Viewed from above, which of the paths shown below will the ball follow after she lets it go?

Lecture 27, Act 2
Solution

- Just before release, the velocity of the ball is tangent to the circle it is moving in.
Lecture 27, Act 2
Solution

- After release it keeps going in the same direction since there are no forces acting on it to change this direction.

Angular Momentum: Definitions & Derivations

- We have shown that for a system of particles

\[F_{\text{EXT}} = \frac{dp}{dt} \]

Momentum is conserved if

\[F_{\text{EXT}} = 0 \]

- What is the rotational version of this??

- The rotational analogue of force \(F \) is torque \(\tau = r \times F \)

- Define the rotational analogue of momentum \(p \) to be angular momentum \(L = r \times p \)
Definitions & Derivations...

- First consider the rate of change of L:
 \[\frac{dL}{dt} = \frac{d}{dt}(r \times p) \]

 \[\frac{d}{dt}(r \times p) = \left(\frac{dr}{dt} \times p \right) + \left(r \times \frac{dp}{dt} \right) \]

 \[= (v \times mv) \]

 \[= 0 \]

 So \[\frac{dL}{dt} = r \times \frac{dp}{dt} \] (so what...?)

Definitions & Derivations...

- Recall that \[F_{EXT} = \frac{dp}{dt} \quad \Rightarrow \quad \frac{dL}{dt} = r \times F_{EXT} \]

- Which finally gives us: \[\tau_{EXT} = \frac{dL}{dt} \]

- Analogue of \[F_{EXT} = \frac{dp}{dt} \]!!
What does it mean?

- \(\tau_{\text{EXT}} = \frac{dL}{dt} \) where \(L = r \times p \) and \(\tau_{\text{EXT}} = r \times F_{\text{EXT}} \)

- In the absence of external torques \(\tau_{\text{EXT}} = \frac{dL}{dt} = 0 \)

Total angular momentum is conserved

Angular momentum of a rigid body about a fixed axis:

- Consider a rigid distribution of point particles rotating in the x-y plane around the z axis, as shown below. The total angular momentum around the origin is the sum of the angular momenta of each particle:

\[
L = \sum_i r_i \times p_i = \sum_i m_i r_i \times v_i = \sum_i m_i r_i v_i \hat{k} \quad \text{(since } r_i \text{ and } v_i \text{ are perpendicular)}
\]

We see that \(L \) is in the z direction.

Using \(v_i = \omega r_i \), we get

\[
L = \sum_i m_i r_i^2 \omega \hat{k}
\]

\[
L = I \omega \quad \text{Analogue of } p = mv!!
\]