Phys 207
Announcements

• Hwk3 submission deadline = 1st thing this morning
 include DSC number on homework

Today’s Agenda
• Ch. 4 problems on board
• More discussion of dynamics
 ➞ Recap
 ➞ The tools we have for making & solving problems:
 » Ropes & Pulleys (tension)
 » Hooke’s Law (springs)
 ➞ Problems: Accelerometer, inclined plane, motion in a circle

Review

• Discussion of dynamics.
 ➞ Newton’s 3 Laws
 ➞ The Free Body Diagram
 ➞ The tools we have for making & solving problems:
 » Ropes & Pulleys (tension)
 » Hooke’s Law (springs)
Review: Pegs & Pulleys

- Used to change the direction of forces
 - An ideal massless pulley or ideal smooth peg will change the direction of an applied force without altering the magnitude: *The tension is the same on both sides!*

\[F_1 = -T \hat{i} \]
\[|F_1| = |F_2| \]
\[F_2 = T \hat{j} \]

Springs

- **Hooke’s Law:** The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.

\[F_x = -kx \]

Where \(x \) is the displacement from the relaxed position and \(k \) is the constant of proportionality.
Springs...

- **Hooke’s Law**: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.

\[F_x = -kx \]

Where \(x \) is the displacement from the relaxed position and \(k \) is the constant of proportionality.

\[F_x = -kx > 0 \quad \text{for} \quad x < 0 \]

\[F_x = -kx < 0 \quad \text{for} \quad x > 0 \]
Scales:

- Springs can be calibrated to tell us the applied force.
 ➕ We can calibrate scales to read Newtons, or...
 ➕ Fishing scales usually read weight in kg or lbs.

1 lb = 4.45 N

Lecture 9, Act 1
Springs

- A spring with spring constant 40 N/m has a relaxed length of 1 m. When the spring is stretched so that it is 1.5 m long, what force is exerted on a block attached to the end of the spring?

(a) -20 N (b) 60 N (c) -60 N
Lecture 9, Act 1
Solution

- Recall Hooke's law:
 \[F_x = -kx \quad \text{Where } x \text{ is the displacement from equilibrium.} \]

 \[F_x = -(40)(.5) \]
 \[F_x = -20 \text{ N} \]

(a) -20 N (b) 60 N (c) -60 N

Problem: Accelerometer

- A weight of mass \(m \) is hung from the ceiling of a car with a massless string. The car travels on a horizontal road, and has an acceleration \(a \) in the \(x \) direction. The string makes an angle \(\theta \) with respect to the vertical (\(y \)) axis. Solve for \(\theta \) in terms of \(a \) and \(g \).
Accelerometer...

- Draw a **free body diagram** for the mass:
 - What are all of the forces acting?

![Diagram showing a free body diagram with forces](image)

\[T \text{ (string tension)} \]

\[m \text{ (gravitational force)} \]

Accelerometer...

- Using components *(recommended):*

\[i: F_x = T_x = T \sin \theta = ma \]

\[j: F_y = T_y - mg = T \cos \theta - mg = 0 \]
Accelerometer...

- **Using components**:

 \[i: \quad T \sin \theta = ma \]

 \[j: \quad T \cos \theta - mg = 0 \]

- Eliminate \(T \):

 \[
 \begin{align*}
 T \sin \theta &= ma \\
 T \cos \theta &= mg \\
 \tan \theta &= \frac{a}{g}
 \end{align*}
 \]

Accelerometer...

- **Alternative solution using vectors** (elegant but not as systematic):

- Find the total vector force \(\mathbf{F}_{\text{NET}} \):

\[
\mathbf{F}_{\text{TOT}} \quad \theta
\]

\[
\mathbf{T} \quad \theta
\]

\[
m \quad \theta
\]

\[
mg \quad \text{(gravitational force)}
\]

\[
T \quad \text{(string tension)}
\]
Accelerometer...

- Alternative solution using vectors (elegant but not as systematic):
- Find the total vector force F_{NET}:
- Recall that $F_{\text{NET}} = ma$:

\[\begin{align*}
mg & \quad \theta \\
ma & \quad \text{(gravitational force)}
\end{align*} \]

- So

\[\tan \theta = \frac{ma}{mg} = \frac{a}{g} \]

Let's put in some numbers:

- Say the car goes from 0 to 60 mph in 10 seconds:
 - $60 \text{ mph} = 60 \times 0.45 \text{ m/s} = 27 \text{ m/s}$.
 - Acceleration $a = \frac{\Delta v}{\Delta t} = 2.7 \text{ m/s}^2$.
 - So $a/g = 2.7 / 9.8 = 0.28$.

\[\theta = \arctan \left(\frac{a}{g} \right) = 15.6 \text{ deg} \]
Problem: Inclined plane

- A block of mass m slides down a frictionless ramp that makes angle θ with respect to the horizontal. What is its acceleration a?

Inclined plane...

- Define convenient axes parallel and perpendicular to plane:
 - Acceleration a is in x direction only.
Inclined plane...

- Consider \(x \) and \(y \) components separately:
- \(i: \ mg \sin \theta = ma. \Rightarrow a = g \sin \theta \)
- \(j: \ N - mg \cos \theta = 0. \Rightarrow N = mg \cos \theta \)

Alternative solution using vectors:

\[a = g \sin \theta \ i \]
\[N = mg \cos \theta \ j \]
Angles of an Inclined plane

The triangles are similar, so the angles are the same!

\[ma = mg \sin \theta \]

Lecture 9, Act 2
Forces and Motion

- A block of mass \(M = 5.1 \, \text{kg} \) is supported on a frictionless ramp by a spring having constant \(k = 125 \, \text{N/m} \). When the ramp is horizontal the equilibrium position of the mass is at \(x = 0 \). When the angle of the ramp is changed to \(30^\circ \) what is the new equilibrium position of the block \(x_1 \)?

 (a) \(x_1 = 20\, \text{cm} \) \hspace{1cm} (b) \(x_1 = 25\, \text{cm} \) \hspace{1cm} (c) \(x_1 = 30\, \text{cm} \)
Lecture 9, Act 2
Solution

- Choose the x-axis to be along downward direction of ramp.
- FBD: The total force on the block is zero since it's at rest.
- Consider x-direction:
 Force of gravity on block is \(F_{x,g} = Mg \sin \theta \)
 Force of spring on block is \(F_{x,s} = -kx_1 \)

\[\begin{align*}
 F_{x,g} &= Mg \sin \theta \\
 F_{x,s} &= -kx_1
\end{align*} \]

Since the total force in the x-direction must be 0:

\[\begin{align*}
 Mg \sin \theta - kx_1 &= 0 \\
 x_1 &= \frac{Mg \sin \theta}{k} \\
 x_1 &= \frac{5.1 \text{kg} \cdot 9.81 \text{m/s}^2 \cdot 0.5}{125 \text{N/m}} = 0.2 \text{m}
\end{align*} \]
Problem: Two Blocks

- Two blocks of masses \(m_1 \) and \(m_2 \) are placed in contact on a horizontal frictionless surface. If a force of magnitude \(F \) is applied to the box of mass \(m_1 \), what is the force on the block of mass \(m_2 \)?

\[
F = \frac{m_1 + m_2}{m_1} a
\]

- Realize that \(F = (m_1 + m_2) a \):

- Draw FBD of block \(m_2 \) and apply \(F_{\text{NET}} = ma \):

\[
F_{1,2} = m_2 a
\]

- Substitute for \(a \):

\[
F_{1,2} = m_2 \left(\frac{F}{(m_1 + m_2)} \right)
\]

\[
F_{1,2} = \frac{m_2}{(m_1 + m_2)} F
\]
Problem: Tension and Angles

- A box is suspended from the ceiling by two ropes making an angle θ with the horizontal. What is the tension in each rope?

\[m \]

\[\theta \]

\[\theta \]

\[T_1 \sin \theta \]

\[T_2 \sin \theta \]

\[T_1 \cos \theta \]

\[T_2 \cos \theta \]

\[mg \]

\[i \]

\[j \]

Problem: Tension and Angles

- Draw a FBD:

\[F_{x,NET} = 0 \text{ and } F_{y,NET} = 0 \]

\[F_{x,NET} = T_1 \cos \theta - T_2 \cos \theta = 0 \]

\[\Rightarrow T_1 = T_2 \]

\[F_{y,NET} = T_1 \sin \theta + T_2 \sin \theta - mg = 0 \]

\[\Rightarrow T_1 = T_2 = \frac{mg}{2 \sin \theta} \]
Problem: Motion in a Circle

- A boy ties a rock of mass m to the end of a string and twirls it in the vertical plane. The distance from his hand to the rock is R. The speed of the rock at the top of its trajectory is v.

What is the tension T in the string at the top of the rock’s trajectory?

Motion in a Circle...

- Draw a Free Body Diagram (pick y-direction to be down):
- We will use $F_{\text{NET}} = ma$ (surprise)
- First find F_{NET} in y direction:

$$F_{\text{NET}} = mg + T$$
Motion in a Circle...

\[F_{NET} = mg + T \]

- Acceleration in y direction:
 \[ma = \frac{mv^2}{R} \]
 \[mg + T = \frac{mv^2}{R} \]
 \[T = \frac{mv^2}{R} - mg \]

What is the minimum speed of the mass at the top of the trajectory such that the string does not go limp? i.e. find \(v \) such that \(T = 0 \).

\[\frac{mv^2}{R} = mg + T \]

\[\frac{v^2}{R} = g \]

\[v = \sqrt{Rg} \]

- Notice that this does not depend on \(m \).
A skier of mass m goes over a mogul having a radius of curvature R. How fast can she go without leaving the ground?

\[v = \sqrt{\frac{mg}{R}} \]

\[v = \sqrt{\frac{Rg}{m}} \]

\[v = \sqrt{Rg} \]

\[\frac{mv^2}{R} = mg - N \]

For $N = 0$:

\[v = \sqrt{Rg} \]