Homework #6. October 30

Topics: second quantization (normal order and expectation values)
 Wick’s theorem
 Hartree-Fock equations

1. Use Wick’s theorem to transform the operator product \(A = a_j a_i^\dagger a_k^\dagger a_l^\dagger \) to normal form.

 Hint: use example given in the lecture to write out

 \[A = :A:+ :A: \]

2. Use Wick’s theorem to calculate the expectation value \(\langle 0 | a_i a_j a_k a_l a_m a_n | 0 \rangle \).

3. Consider an atom with \(n \) electrons. The state \(|0_c\rangle \) represents the core with filled subshells:

 \[|0_c\rangle = a_{a_1} a_{a_2} \ldots |0\rangle \].

 The following designations are accepted: letters in the beginning of the alphabet (\(a, b, c, d \)) designate core orbitals and letters \(m, n, r, s \) designate excited (and non-core) orbitals.

 Which of the following operator products are in normal form?

 \[(a) \ a_{m} a_{a}^\dagger \quad (d) \ a_{m} a_{a}^\dagger a_{b}^\dagger a_{b} \]

 \[(b) \ a_{a} a_{m}^\dagger \quad (e) \ a_{c} a_{d}^\dagger a_{a} a_{b} \]

 \[(c) \ a_{a} a_{b}^\dagger \quad (f) \ a_{c} a_{b} a_{d}^\dagger a_{c} \]

 Calculate the expectation value of each of these products in the core state, i.e., \(\langle 0_c | A | 0_c \rangle \).

4. Write down in detail the Hartree-Fock equations for the 3 closed shells (1s, 2s, and 2p) of the neon atom. Hint: the equation for the 1s shell (in atomic units) is

 \[
 h_0 P_{1s} + V_{dir} P_{1s} - \left[v_0(1s, r) P_{1s} + v_0(2s, 1s, r) P_{1s} + v_1(2p, 1s, r) P_{2p} \right] = e_{1s} P_{1s}
 \]

 where

 \[
 h_0 P_{nl} = \left(-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} - \frac{Ze}{r} \right) P_{nl}
 \]

 \[
 V_{dir} = 2v_0(1s, r) + 2v_0(2s, r) + 6v_0(2p, r)
 \]

DUE: November 11