Postulates of quantum mechanics

Uncertainty relations
Hydrogen-like atoms
Addition of angular momenta
Dipole transitions

What does a physical theory involves?

Basic physical concepts

Set of rules which map the physical concepts to the corresponding mathematical objects

Mathematical formalism

L. Ballentine, Quantum Mechanics, A Modern Development
Chapter 2
How are the problems solved?

Express physical problem in mathematical terms → Solve it using mathematical techniques → Set of rules which relate mathematical formalism to observable reality → Translate mathematical solution back into the physical world

Postulates of quantum mechanics

- L. Ballentine, Quantum Mechanics, A Modern Development, Chapter 2, pages 42-50
- R. Liboff, Introductory quantum mechanics, Chapter 3, pages 68-84 (4th edition)
- M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Chapter 2, pages 80-86, 93-96, 101-102
Postulates of quantum mechanics

Postulate 1. To each dynamical variable (physical concept) there corresponds a linear operator (mathematical object) and the possible values of the dynamical variable are the eigenvalues of the operator.

Postulate 2. The measurement of the observable A that yields the value α leaves the system in the state φ_α, where φ_α is the eigenfunction of A that corresponds to eigenvalue α.

Postulate 3. The state of a system at any instant of time may be represented by a state or wave function ψ which is continuous and differentiable.

System in state $\psi(r,t)$ \(\rightarrow\) \(\langle A \rangle = \int \psi^* \hat{A} \psi dr\)

Average (expectation value) of observable A
Postulates of quantum mechanics

Postulate 4. Development of state in time:

\[i\hbar \frac{\partial}{\partial t} \psi(r,t) = \hat{H}\psi(r,t) \]

Another version (N&C)

- **Postulate 1:** Associated to any isolated physical system is a complex vector space with inner product (a Hilbert space) known as the state space of the system. The system is completely described by its state vector, which is a unit vector in the system’s state space.
Another version (N&C)

- **Postulate 3**: Quantum measurements are described by a collection \(\{M_m\} \) of measurement operators. These are operators acting on the state space of the system being measured. The index \(m \) refers to the outcome that may occur in the experiment. If the state of the quantum system is \(|\psi\rangle \) immediately before the measurement then the probability that the result \(m \) occurs is given by
 \[p(m) = \frac{\langle \psi | M_m \dagger M_m | \psi \rangle}{\langle \psi | M_m \dagger M_m | \psi \rangle}. \]
 The state of the system after the measurement is
 \[\frac{M_m |\psi\rangle}{\sqrt{\langle \psi | M_m \dagger M_m | \psi \rangle}}. \]
 Completeness equation: \(\sum_m M_m \dagger M_m = I \).

- **Postulate 2**: The evolution of a closed quantum system is described by a unitary transformation. That is, the state \(|\psi\rangle \) of the system at time \(t_1 \) is related to the state \(|\psi'\rangle \) of the system at the time \(t_2 \) by a unitary operator \(U \) which depends only on the times \(t_1 \) and \(t_2 \), \(|\psi'\rangle = U |\psi\rangle \).

- **Postulate 2**: The time evolution of the state of a closed quantum system is described by a Schrödinger equation,
 \[i \hbar \frac{d|\psi\rangle}{dt} = H |\psi\rangle. \]
 \(H \) is a fixed Hermitian operator known as the Hamiltonian of the closed system.
Another version (N&C)

- **Postulate 4**: The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. If we have systems numbered 1 through n, and system number i is prepared in the state $|\psi_i\rangle$, then the joint state of the total system is $|\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle$.

Density matrix

- Suppose a quantum system is in one of a number of states ψ_i with probabilities p_i, respectively. The $\{p_i, |\psi_i\rangle\}$ is ensemble of pure states.

- The density operator ρ for the system is defined by the equation

$$\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|.$$

- A quantum system which state $|\psi\rangle$ is known exactly is said to be in a pure state and the corresponding density operator is $|\psi\rangle \langle \psi|$. The system is in a mixed state otherwise.
Postulates: Summary

Observables <-> Linear operators

State of the system <-> State or wave function

Evolution of the system (development of state in time)

Measurement and its interpretation