Lecture 11 Problem solving

Problem 1
A particle of mass m in the harmonic oscillator potential starts out in the state

\[\Psi(x, 0) = A \left(1 - 2 \sqrt{\frac{m \omega}{\hbar}} x \right)^2 e^{-\frac{m \omega}{2 \hbar} x^2} \]

for some constant A.

(a) What is the expectation value of the energy?

(b) At some later time T the wave function is

\[\Psi(x, T) = B \left(1 \UPARROW \bigcirc \bigcirc 2 \sqrt{\frac{m \omega}{\hbar}} x \right)^2 e^{-\frac{m \omega}{2 \hbar} x^2} \]

for some constant B. What is the smallest possible value of T?

Solution
First, let's introduce standard notations for harmonic oscillator:

\[\xi = \sqrt{\frac{m \omega}{\hbar}} x \quad \lambda = \left(\frac{m \omega}{\pi \hbar} \right)^{1/4} \]

Then, \(\Psi(x, 0) = A \left(1 - 2 \xi \right)^2 e^{-\xi^2/2} \]

\[= A \left(1 - 4 \xi + 4 \xi^2 \right) e^{-\xi^2/2} \]

This function can be expressed as a linear combination of the first three states of harmonic oscillator.

\[\Psi(x, 0) = c_0 \psi_0(x) + c_1 \psi_1(x) + c_2 \psi_2(x) \]
Now, we need to find coefficients \(c \) by equating same powers of \(\xi \):

\[
\begin{align*}
\psi_0(x) &= c e^{-\xi^2/2} \\
\psi_1(x) &= \sqrt{2} \psi \xi e^{-\xi^2/2} \\
\psi_2(x) &= \frac{d}{\sqrt{2}} \left(2 \xi^2 - 1 \right) e^{-\xi^2/2}
\end{align*}
\]

Normalization gives:

\[
\psi(x, 0) = (A - 4A \xi + 4A \xi^2) e^{-\xi^2/2}
\]

\[
\psi(x, 0) = (d \psi_0 + \sqrt{2} \psi_2) x \xi + \frac{d}{\sqrt{2}} \cdot 2 \psi_2 \xi^2 - \frac{d}{\sqrt{2}} \psi_2
\]

\[
\xi_0: \quad A = d \psi_0 - \frac{d}{\sqrt{2}} \psi_2 = d \psi_0 - \frac{d}{\sqrt{2}} \cdot 2 \sqrt{2} A \xi = d \psi_0 - 2A \quad \text{c.o. } 3A/d
\]

\[
\xi_1: \quad -4A = \sqrt{2} \psi_2 \quad \Rightarrow \quad c_1 = -2 \sqrt{2} A / d
\]

\[
\xi_2: \quad 4A = d \psi_2 \quad \Rightarrow \quad c_2 = 2 \sqrt{2} A / d
\]

Normalization gives:

\[
A = |c_0|^2 + |c_1|^2 + |c_2|^2
\]

\[
= 9 \frac{A^2}{\alpha^2} + 8 \frac{A^2}{\alpha^2} + 8 \frac{A^2}{\alpha^2} = 25 \frac{A^2}{\alpha^2} \quad \Rightarrow \quad A = \frac{d}{5}
\]

\[
c_0 = \frac{3}{5}, \quad c_1 = -\frac{2 \sqrt{2}}{5}, \quad c_2 = \frac{2 \sqrt{2}}{5}
\]
Now it is really easy to find the expectation value of energy:

\[
\langle H \rangle = \sum_n |c_n|^2 E_n = \sum_n |c_n|^2 \left(n + \frac{1}{2}\right) \hbar \omega
\]

Proof:

\[
H \psi_n = E_n \psi_n
\]

\[
\langle H \rangle = \int \psi^* H \psi \, dx = \int \left(\sum_{m} c_m \psi_m^* \right) H \left(\sum_{n} c_n \psi_n \right) \, dx
\]

\[
= \sum_{m} \sum_{n} c_m^* c_n E_n \int \psi_m^* \psi_n \, dx = \sum_{n} |c_n|^2 E_n
\]

\[
\langle H \rangle = C_0^2 \left(\frac{1}{2} \hbar \omega\right) + C_1^2 \left(\frac{3}{2} \hbar \omega\right) + C_2^2 \left(\frac{5}{2} \hbar \omega\right)
\]

\[
= \frac{9}{25} \left(\frac{1}{2} \hbar \omega\right) + \left(\frac{8}{25}\right) \left(\frac{3}{2} \hbar \omega\right) + \left(\frac{8}{25}\right) \left(\frac{3}{2} \hbar \omega\right)
\]

\[
\langle H \rangle = \frac{23}{50} \hbar \omega
\]

(b) \(\psi(x, t) = \sum_{n=0}^{2} c_n \psi_n(x) e^{-iE_n t/\hbar}\) using \(E = \hbar \omega\)

we get

\[
\psi(x, t) = \frac{3}{5} \psi_0 e^{-i\omega t/2} - \frac{2\sqrt{2}}{5} \psi_1 e^{-3i\omega t/2} + \frac{2\sqrt{2}}{5} \psi_2 e^{-5i\omega t/2}
\]

\[
= e^{-i\omega t/2} \left[\frac{3}{5} \psi_0 - \frac{2\sqrt{2}}{5} e^{-i\omega t} \psi_1 + \frac{2\sqrt{2}}{5} \psi_2 e^{-2i\omega t} \right]
\]

to change sign of this term \(e^{-i\omega T} = 1 \Rightarrow\)

\(\omega T = \pi\) and \(T = \pi/\omega\)

Note that \(e^{-2i\omega T} = 1\) and sign of the last term does not change.
Problem 2

(a) Show that the wave function of a particle in the infinite square well returns to its original form after a quantum revival time \(T = \frac{4m a^2}{\pi^2 \hbar} \), i.e.
\[
\psi(x, T) = \psi(x, 0)
\]
for any state (not just a stationary state).

(b) What is the classical revival time, for a particle of energy \(E \) bouncing back and forth between the walls?

(c) For what energy are the two revival times equal?

Solution

The most general solution for the infinite square well potential is:
\[
\psi(x, t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-i \left(\frac{n^2 \hbar^2 \pi^2}{2ma^2} \right) t}
\]

Therefore,
\[
\frac{n^2 \hbar^2 \pi^2}{2ma^2} T = \frac{n^2 \hbar^2 \pi^2}{2ma^2} \left(\frac{4ma^2}{\pi^2 \hbar} \right) = 2\pi n^2
\]

plug in revival time

\[
-e^{-i \left(\frac{n^2 \hbar^2 \pi^2}{2ma^2} \right) (t+T)} = e^{-i \left(\frac{n^2 \hbar^2 \pi^2}{2ma^2} \right) t} e^{i 2\pi n^2} = 1 \text{ since } n^2 \text{ is an integer}
\]

We get
\[
\psi(x, t+T) = \psi(x, t)
\]
(b) The classical revival time is the time that particle travels from one side of the well to the other and back.

\[2a = vT \implies T_c = \frac{2a}{v} \]

Since \(V = 0 \) in the well \(\implies E = E_{kin} = \frac{1}{2}mv^2 \Rightarrow v = \sqrt{\frac{2E}{m}} \) and \(T_c = \frac{2a}{\sqrt{2E}} \sqrt{m} = a\sqrt{\frac{2m}{E}} \)

(c) Quantum and classical revival times are equal if

\[T_q = \frac{4ma^2}{\pi^2\hbar^2} = a\sqrt{\frac{2m}{E}} \Rightarrow \]

\[\frac{16m^2a^2}{\pi^2\hbar^2} = \frac{2m}{E} \Rightarrow \]

\[E = \frac{\pi^2\hbar^2}{8ma^2} = \frac{E_1}{4} \]
Problem 3

Let \(P_{ab}(t) \) be the probability of finding a particle in the range \(a<x<b \), at time \(t \).

(a) Show that

\[
\frac{dP_{ab}}{dt} = J(a, t) - J(b, t)
\]

where

\[
J(x, t) = \frac{i\hbar}{2m} \left(\psi \frac{d\psi^*}{dt} - \psi^* \frac{d\psi}{dt} \right).
\]

The \(J(x, t) \) is called probability current since it tells you the rate with which probability is "flowing" past the point \(x \). What are its units?

(b) Find the probability current for the wave function

\[
\psi(x, t) = A e^{-\frac{a}{2} \left(\frac{m x^2}{\hbar^2} + it \right)}.
\]

Solution

\[
P_{ab}(t) = \int_a^b |\psi(x, t)|^2 \, dx
\]

\[
\frac{dP_{ab}}{dt} = \int_a^b \frac{2}{\hbar} |\psi|^2 \, dx
\]

In one of the lectures, we found that

\[
\frac{2}{\hbar} |\psi|^2 = \frac{2}{\hbar} \left[\frac{i\hbar}{2m} \left(\psi^* \frac{d\psi}{dx} - \frac{d\psi^*}{dx} \psi \right) \right]
\]

Comparing it with definition of \(J(x, t) \), we get
\[\frac{\partial |\psi|^2}{\partial t} = - \frac{\partial}{\partial x} \mathcal{J}(x, t) \]

\[\frac{d \mathcal{P}_{ab}}{dt} = - \int_a^b \frac{2}{\partial x} \mathcal{J}(x, t) \, dx = - \left[\mathcal{J}(x, t) \right]_a^b \]

\[= \mathcal{J}(a, t) - \mathcal{J}(b, t). \quad \text{QED} \]

Probability is dimensionless, so \(\mathcal{J} \) has dimensions 1/time, and units \((\text{seconds})^{-1}\).

\((b) \quad \psi(x, t) = A e^{-a \left[\frac{m}{\hbar} x^2 / t + iat \right]} \)

\[= f(x) e^{-iat} \]

\[f(x) = A e^{-amx^2 / \hbar} \]

\[\frac{\partial \psi}{\partial x} = f(x) e^{-iat} \frac{df}{dx} e^{iat} = f \frac{df}{dx} \]

\[\psi^* \frac{\partial \psi}{\partial x} = \left(f(x) e^{iat} \frac{df}{dx} e^{-iat} \right) = f \frac{df}{dx} \]

\[\mathcal{J}(x, t) = 0 \]
Note on the calculation of integral \(\int_{-\infty}^{\infty} e^{-\left(a x^2 + bx\right)} \, dx \) in Homework #4.

Change of variables

\[
y = \sqrt{a} \left(x + \frac{b}{2a} \right)
\]

\[
x = \frac{y}{\sqrt{a}} - \frac{b}{2a}
\]

\[
a x^2 + bx = a \left(\frac{y}{\sqrt{a}} - \frac{b}{2a} \right)^2 + b \left(\frac{y}{\sqrt{a}} - \frac{b}{2a} \right)
\]

\[
= a \left(\frac{y^2}{a} - \frac{2yb}{2a\sqrt{a}} + \frac{b^2}{4a^2} \right) + b \frac{y}{\sqrt{a}} - \frac{b^2}{2a}
\]

\[
= y^2 - \frac{b^2}{4a}
\]

Therefore,

\[
\int_{-\infty}^{\infty} e^{-\left(a x^2 + bx\right)} \, dx = \int_{-\infty}^{\infty} e^{-y^2 + \frac{b^2}{4a}} \frac{1}{\sqrt{a}} \, dy
\]

\[
= \frac{1}{\sqrt{a}} e^{\frac{b^2}{4a}} \int_{-\infty}^{\infty} e^{-y^2} \, dy = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a}}
\]

\[
\int_{-\infty}^{\infty} e^{-\left(a x^2 + bx\right)} \, dx = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a}}
\]
We used

\[\int_{-\infty}^{\infty} x^{2n} e^{-x^2/a^2} \, dx = \sqrt{\pi} \frac{(2n)!}{n!} \left(\frac{a}{2} \right)^{2n+1} \]

for \(n = 1 \) and \(a = 1 \), we find

\[\int_{-\infty}^{\infty} e^{-y^2} \, dy = 2 \sqrt{\pi} \frac{1}{2} = \sqrt{\pi} \]