Natural Orbitals and BEC in traps, a diffusion Monte Carlo analysis

J. L DuBois and H. R. Glyde

Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

(Dated: March 19, 2003)

We investigate the properties of hard core Bosons in harmonic traps over a wide range of densities. Bose-Einstein condensation is formulated using the one-body Density Matrix (OBDM) which is equally valid at low and high densities. The OBDM is calculated using diffusion Monte Carlo methods and it is diagonalized to obtain the “natural” single particle orbitals and their occupation, including the condensate fraction. At low Boson density, na3 ≪ 10−3, where n = N/V and a is the hard core diameter, the condensate is localized at the center of the trap. As na3 increases, the condensate moves to the edges of the trap. At high density it is localized at the edges of the trap. At na3 ≤ 10−4 the Gross-Pitaevskii theory of the condensate describes the whole system within 1%. At na3 ≈ 10−3 corrections are 3% to the GP energy but 30% to the Bogoluibov prediction of the condensate depletion. At na3 ≳ 10−2, mean field theory fails. At na3 ≳ 0.1, the Bosons behave more like a liquid 4He droplet than a trapped Boson gas.

I. INTRODUCTION

Bose-Einstein condensation (BEC) has been a topic of fundamental interest since it was first predicted by Einstein in 1924 [1]. He showed that as a consequence of Bose statistics [2] a macroscopic fraction, N0/N, of the atoms in an ideal Bose gas can condense into a single quantum state. London [3, 4] postulated that superfluidity in liquid 4He was a consequence of a transition to BEC. But liquid 4He is a strongly interacting, dense Bose liquid and the connection between BEC in an ideal gas and superfluidity was not at all clear [5]. Similarly, the many-body correlation effects induced by the inter-boson interaction significantly reduce the condensate fraction even at zero temperature [6, 7]. Modern direct measurements [8] of BEC in liquid 4He find only 7.25% of the liquid in the condensate at T = 0K.

The theoretical framework for treating an interacting Bose gas was initiated in 1947 by Bogoliubov [9]. He developed a perturbation expansion valid for low density and weak interaction, na3 ≪ 1 (where n is the number density N/V and a is the hard core diameter of the Bosons), and small depletion of the condensate, (N − N0)/N ≪ 1. About a decade later, Onsager and Penrose [10] and Löwdin [11] formulated a definition of BEC in terms of the eigenvalues and eigenvectors (natural orbitals) of the one-body density matrix (OBDM). An orbital with macroscopic occupation arising from diagonalization of the OBDM is defined as the “condensate wave-function” or order parameter. This formulation allows direct access to condensate properties at arbitrary density and does not require a large condensate fraction. The work in this paper is based on the OBDM formulation of BEC which is rigorously valid for a strongly interacting system [5].

In 1995, experiments in weakly interacting dilute vapors of the alkali atoms 87Rb, 23Na and 7Li in magnetic traps provided direct evidence of a clear transition from a thermally distributed cloud to macroscopic occupation of a single quantum state [12–14]. This long awaited direct realization of BEC spawned a dramatic renewal of interest in Bose systems and BEC. Since the densities in these experiments were low (typical number densities were 1012 cm−3 and na3 ≈ 10−6 where a is the s-wave scattering length of the atoms), almost all of the theoretical activity has focused on the weakly interacting gas limit and the Gross-Pitaevskii (GP) equation [15]. The GP equation provides an excellent mean field description of the condensate at low density. This is a valid description of the whole Bose gas in the dilute limit, na3 ≪ 1, where most of the atoms are in the condensate. However, it is inaccurate for strongly interacting systems in which the condensate fraction is significantly depleted by quantum fluctuations. Since the experiments in 1995, only a handful of studies have attempted to consider the properties of BEC beyond the dilute regime and the GP description of the condensate [16–37]. Most of this relatively small body of work rely on modified forms of the GP equation which incorporate higher terms in the Bogoluibov expansion that include effects of atoms outside the condensate within a local density approximation. Unfortunately, the condensate fraction and distribution in the trap calculated by such methods become inaccurate as the density becomes greater than na3 ≳ 10−3 [25].

It has recently become possible to study Bose systems with tunable interactions [38–43] for which densities of up to na3 ≈ 1 are obtainable. Specifically, 85Rb at densities in the range na3 ≳ 10−3 − 10−1 has been investigated. BEC in metastable helium isotopes [44–46] with na3 ≳ 10−4 and in atomic hydrogen [47] with na3 ≳ 10−5, are also higher density Bose gases. This makes the study of BEC and the role of interactions in trapped Bose gases over a wide range of densities of direct interest to experiment.

The chief purpose of this work is to go beyond the dilute limit, to test the limits of the GP equation and related mean field approximations and to explore the zero temperature properties of trapped hard core Bosons as na3 increases from the dilute limit to the dense regime corresponding to liquid 4He, and beyond. The range of densities investigated here is displayed in Fig. 1. We increase the density by increasing both N and the hard core
sity is low. At high density, the trapped Bosons resemble edges of the trap (large translations in the condensate density distribution. At high density, the total density distribution appear which are not found also, at higher densities (usually found [15]. At higher density (densate density distribution in the trap. At low density, OBDM are evaluated using diffusion Monte Carlo (DMC) methods.

Specifically, we compare the ground state energy of the whole trapped gas calculated using DMC, \(E_{DMC} \), with the usual energy of the condensate calculated using the GP equation, \(E_{GP} \). As density increases, \(E_{DMC} \) and \(E_{GP} \) begin to differ. For example, at \(n a^3 = 10^{-3} \), we find \((E_{DMC} - E_{GP})/E_{GP} = 3\% \). Modified GP equations provide a mean field description of the atoms above the condensate. The dependence of \(E_{DMC} - E_{GP} \) on the number of trapped Bosons, \(N \), and on the scattering length, \(a \), follows the predictions of the Modified GP equation remarkably well up to high densities, \(n a^3 \approx 5 \times 10^{-2} \). This suggests that the difference \(E_{DMC} - E_{VMC} \) can be attributed to the atoms above the condensate. However, the energy is not as sensitive to approximations as some other properties.

We compare the condensate fraction obtained using the rigorous OBDM-DMC method with predictions of the Bogoliubov theory. The two agree within 1% for \(n a^3 \lesssim 10^{-4} \). At higher densities, the Bogoliubov theory significantly underestimates the depletion of the condensate, by 25% at \(n a^3 \approx 2 \times 10^{-2} \). We evaluate the condensate density distribution in the trap. At low density, the condensate is localized at the center of the trap as usually found [15]. At higher density (\(n a^3 \approx 10^{-2} \)), the condensate is spaced over several trap lengths and the condensate and total density have similar distributions. Also, at higher densities (\(n a^3 \gtrsim 2 \times 10^{-2} \)), oscillations in the total density distribution appear which are not found in mean field theories. There are no corresponding oscillations in the condensate density distribution. At high density (\(n a^3 \gtrsim 0.10 \)), the condensate is localized at the edges of the trap (large \(r/a \)) where the total boson density is low. At high density, the trapped Bosons resemble liquid \(^4\text{He} \) droplets [49–51].

We also compare the present DMC results with our earlier variational Monte Carlo (VMC) values [50]. We find that the VMC and DMC energies agree well at all densities and that the ground state energy is not very sensitive to the trial variational wave-function. However, the OBDM and the condensate fraction is very sensitive to the trial wave function at higher densities. An accurate initial trial function is needed to get reliable condensate fractions even in the DMC formulation.

Monte Carlo methods are usually applied to dense systems such as liquid and solid \(^4\text{He} \) [6, 7]. Recently Giorgini et al. have evaluated the energy and condensate fraction of the uniform Bose gas over a wide density range, \(10^{-6} \leq n a^3 \leq 10^{-3} \) [25]. Grüter et al. [20], have evaluated the critical temperature, \(T_c \), for BEC in a Bose gas using path integral Monte Carlo (PIMC) methods. They find \(T_c \) is increased above the ideal Bose gas value by interaction in the dilute range. This increase is observed in dilute concentrations of \(^4\text{He} \) in Vycor [52]. At liquid \(^4\text{He} \) densities, \(T_c \) is decreased by interaction [53, 54].

Krauth [16] first applied QMC to BEC in a trap using PIMC methods. For 10,000 hard sphere Bosons in a spherical trap with a ratio of hard core diameter to trap length, \(a/a_{ho} = 4.3 \times 10^{-3} \) (\(n a^3 \approx 10^{-4} \)), he found that condensate was concentrated at the center of the trap while the uncondensed atoms were spread over a wide range and well described by a classical Bose gas. Holzmann et al. [22] made a direct comparison of PIMC and Hartree-Fock calculations for a dilute gas of hard spheres in a trap with \(a/a_{ho} = 4.3 \times 10^{-3} \). For temperatures near \(T_c \), they found \(N_0 \) was greater in PIMC. The increase in \(N_0 \) with exact representation of the interaction effects is consistent with the corresponding increase in \(T_c \) with interaction in the uniform Bose gas.

Recently, QMC methods have been successfully applied to the study of highly inhomogeneous Bose systems. Astrakharchik et al. used DMC to study BEC and superfluidity in a Bose gas with disorder at zero temperature [34]. They find an intriguing decoupling of the superfluid and condensate fractions for strong disorder. Studies of superfluid \(^4\text{He} \) with a free surface [32, 33] found the local condensate fraction peaks (\(n_0 \approx 0.95\% \) [32]) in the dilute region just inside the liquid-vacuum interface. Blume [36] and Astrakharchik and Giorgini [37] have examined the transition from the three-dimensional to the quasi one-dimensional regime for Bosons in highly elongated cigar-shaped traps. They confirm that the Bose gas undergoes “fermionization” in the quasi 1-D regime.

In section II, we describe the theoretical framework and computational methods used. Section III contains the present results. In section IV, the chief results are reviewed and discussed.

II. METHODS

We consider \(N \) Bosons of mass \(m \) confined in an external trapping potential, \(V_{ext}(r) \), and interacting via a two-body potential \(V_{int}(r_1, r_2) \). The Hamiltonian for this
system is:

$$H = \sum_{i}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + V_{\text{ext}}(r_i) \right) + \sum_{i<j}^{N} V_{\text{int}}(r_i, r_j).$$ \hspace{1cm} (1)$$

Here,

$$V_{\text{ext}}(r) = \frac{1}{2} m \omega_{ho}^2 r^2,$$ \hspace{1cm} (2)

where ω_{ho}^2 is the characteristic trap frequency. Interactions are modelled by a hard sphere potential,

$$V_{\text{int}}(r) = \begin{cases} \infty & r \leq a \\ 0 & r > a. \end{cases}$$ \hspace{1cm} (3)

Introducing lengths in units of the characteristic trap length $a_{ho} = (\hbar/m\omega_{ho})^{1/2}$, $r \rightarrow r/a_{ho}$, and energies in units of $\hbar \omega_{ho}$ as in [15], the many-body Hamiltonian is:

$$H = \sum_{i}^{N} \frac{1}{2} (-\nabla_i^2 + \bar{r}_i^2) + \sum_{i<j} V_{\text{int}}(|r_i - r_j|).$$ \hspace{1cm} (4)

A. Diffusion Monte Carlo implementation

Diffusion Monte Carlo is a method for finding the exact properties of the quantum mechanical ground-state of a many-body system to within arbitrary precision. The DMC algorithm implemented in this work closely follows the method presented by Reynolds and Ceperley in 1982 [55]. The starting point for this method is the time dependent Schroedinger equation in imaginary time:

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{R}) - E_T \right] \Psi(\mathbf{R}, t) = -\hbar \frac{\partial \Psi(\mathbf{R}, t)}{\partial t}.$$ \hspace{1cm} (5)

The time dependent component of $\Psi(\mathbf{R}, t)$, $Q_i(t)$, is $Q_i(t) = \exp(-(E_i - E_T)t/\hbar)$. E_T is an adjustable target energy. In the $t \rightarrow \infty$ limit, the steady state solution of (5) is the ground state $\Phi_0(\mathbf{R})$.

The term diffusion Monte Carlo comes from the resemblance of (5) to the classic diffusion equation:

$$D \nabla^2 \rho(\mathbf{R}, t) = \frac{\partial \rho(\mathbf{R}, t)}{\partial t}. $$ \hspace{1cm} (6)

This equation can be simulated by a Monte Carlo random walk in configuration space. Treating the $[V(\mathbf{R}) - E_T]\Psi(\mathbf{R}, t)$ component of (5) alone results in a rate equation of the form

$$v(\mathbf{R}) \rho(\mathbf{R}, t) = -\frac{\partial \rho(\mathbf{R}, t)}{\partial t}.$$ \hspace{1cm} (7)

This component represents a branching process in which the growth or decay of a population is proportional to its density. In the present implementation the diffusion and branching processes are combined to simulate (5) and obtain the zero temperature ground state of the time independent Schrodinger equation.

A simple application of (5) above results in a branching rate which is proportional to the potential energy $V(\mathbf{R}) - E_T$. This means that large fluctuations in the potential, $V(\mathbf{R})$, will cause correspondingly large fluctuations in the population of walkers. Dramatic fluctuations in the number of walkers can result in large inefficiencies when treating realistic many-body systems. The solution to this problem was first presented by Kalos et al. [48]. In this method, a trial function is introduced to guide the metropolis walk to regions of higher probability and lower potential energy resulting in lower fluctuations in the population of walkers. The wave-function in (5) is replaced by a product of the true ground state, $\Psi(\mathbf{R}, t)$, and a guiding function $\Psi_T(\mathbf{R})$,

$$\Psi(\mathbf{R}, t) \rightarrow \Psi(\mathbf{R}, t) \Psi_T(\mathbf{R}).$$ \hspace{1cm} (8)

While use of a guiding function is necessary for the efficient application of the DMC method, it can introduce a bias into the calculation of observables which do not commute with the Hamiltonian unless corrective measures are taken – such as the application of “forward walking” [48, 56].

We evaluate the expectation value, $\langle \Psi | O | \Psi \rangle$, of an operator O, using QMC. In integral form the expectation value is

$$\langle \Psi | O | \Psi \rangle = \int d\mathbf{R} \, \Psi^*(\mathbf{R}) O(\mathbf{R}) \Psi(\mathbf{R}).$$ \hspace{1cm} (9)

To evaluate this expression using QMC, (9) is recast as

$$\langle \Psi | O | \Psi \rangle = \int d\mathbf{R} \, |\Psi(\mathbf{R})|^2 \left[\frac{O(\mathbf{R}) \Psi(\mathbf{R})}{\Psi(\mathbf{R})} \right].$$ \hspace{1cm} (10)

The result of a QMC calculation is a set of configurations $\{\mathbf{R}_1, ..., \mathbf{R}_M\}$ sampled from $|\Psi|^2$. Using these configurations we may estimate $\langle \Psi | O | \Psi \rangle$ as

$$\langle \Psi | O | \Psi \rangle \approx \frac{1}{M} \sum_{i=1}^{M} \frac{O(\mathbf{R}_i) \Psi(\mathbf{R}_i)}{\Psi(\mathbf{R}_i)}. $$ \hspace{1cm} (11)

This estimate becomes exact as $M \rightarrow \infty$.

B. The OBDM and natural orbitals

A goal in this work is to describe BEC in systems with interactions. To do this we require a definition of the condensate single particle state. Following Penrose and Onsager, Löwdin and others [10, 11], we take the one-body density matrix (OBDM) as the fundamental quantity for an interacting system and define the natural single particle orbitals (NO) in terms of the OBDM. The OBDM is [57]

$$\rho(\mathbf{r}, \mathbf{r'}) = \langle \hat{\Psi}^\dagger(\mathbf{r'}), \hat{\Psi}(\mathbf{r}) \rangle,$$ \hspace{1cm} (12)
where $\hat{\psi}(r)$ is the field operator that annihilates a single particle at the point r in the system. To define the NO, we introduce a set of single particle states having wave functions $\phi_i(r)$ and expand $\psi(r)$ in terms of these states and the operators \hat{a}_i which annihilate a particle from $|i\rangle$,

$$\hat{\psi} = \sum_i \phi_i(r) \hat{a}_i. \quad (13)$$

Requiring that the \hat{a}_i satisfy the usual commutation

$$\{\hat{a}_i, \hat{a}_j\} = \delta_{ij},$$

and number relations

$$\langle \hat{a}_i \hat{a}_j \rangle = N_i \delta_{ij},$$

we have

$$\rho(r, r') = \sum_{i,j} \phi_i^* (r') \phi_i (r) N_i \delta_{ij} = \sum_{i,j} \phi_i^* (r') \phi_i (r) N_i \delta_{ij} \quad (14)$$

This may be taken as the defining relation of the NO, $\phi_i(r)$. Specifically, we have from (14),

$$\int d\Omega d\rho d\phi \phi_i^* (r') \rho(r, r') \phi_j (r') = N_i \delta_{ij}, \quad (15)$$

so that the NO may be obtained by diagonalizing the OBDM. The eigenvectors are the NO and the eigenvalues are the occupation, N_i, of the orbitals. In principle any orbital which satisfies $N_i >> 1$ may be considered a macroscopically occupied pseudo-particle state — i.e. the equivalent of a Bose-Einstein condensate. A Bose system with more than one macroscopically occupied state would represent a fragmented condensate [5]. In the systems studied in this work, only a single condensate orbital was found to have macroscopic occupation. The condensate is therefore the orbital having the highest occupation, denoted $\phi_0(r)$, and the condensate fraction is $n_0 = N_0/N$.

The relations (14) and (15) involve the vector r and r' and cannot be solved directly as matrix equations. To obtain matrix equations, we restrict ourselves to spherical traps and seek equations for the radial component of the NO as in ref. [50]. In this approach, the OBDM is expanded in Legendre Polynomials, $P_l(2\mathbf{r} \cdot 2\mathbf{r})$, and evaluated using the QMC ground state, Ψ_0, as

$$\rho_i(r_1, r'_1) = \int d\Omega_1 d\rho_1 \cdots d\rho_N \psi_0^* (r_1 \ldots r_N) P_l(\hat{r}_1 \cdot \hat{r}_1') \psi_0 (r'_1 \ldots r_N). \quad (16)$$

C. QMC Evaluation of $\rho_i(r, r')$

In QMC we evaluate (16) in a form similar to (10) giving

$$\rho_i(r_1, r'_1) \approx \frac{1}{4\pi} \int_{-\epsilon}^{+\epsilon/2} dr_1 \int d\Omega_1 d\mathbf{R} \frac{P_l(\hat{r}_1 \cdot \hat{r}_1') \psi_0 (r_1 \ldots r_N)}{\psi_0 (r_1 \mathbf{R})}, \quad (17)$$

where $\mathbf{R} \equiv (r_2 \ldots r_N)$ and ϵ is the width of the grid elements upon which $\rho_i(r_1, r'_1)$ is being evaluated. Because the systems we are evaluating are spherically symmetric, the direction of \mathbf{r}' is arbitrary. We may take advantage of this fact to reduce the statistical uncertainty in estimates of $\rho_i(r, r')$ by evaluating (17) for several different directions of \mathbf{r}' and taking the average result. In addition, since we are dealing with identical Bosons, the OBDM does not depend on the particle being evaluated so $\rho_i(r_1, r'_1) = \rho_i(r'_1, r_1)$. This allows us to take the average, $\rho_i(r_1, r'_1) = 1/N \sum_i \rho_i(r_1, r'_1)$.

D. Diagonalization and error estimation

Using the method described above, the OBDM is evaluated on a grid of values of $r = i\epsilon$ and $r' = j\epsilon$ where i and j are integers in the range $0 \leq i, j \leq Q$ (where Q is a maximum cutoff). We may then construct the discrete matrix, $[i\epsilon \rho_i (i\epsilon, j\epsilon) j\epsilon]$, which is readily diagonalized by standard matrix diagonalization methods.

Replacing the continuous matrix $\rho_i(r, r')$ with the discrete matrix $[i\epsilon \rho_i (i\epsilon, j\epsilon) j\epsilon]$ is a potential source of systematic error. To avoid this problem, we evaluated each system with decreasing values of the grid spacing, ϵ, such that $\epsilon_{q+1} = \epsilon_q/2$. The largest value of ϵ for which no significant change in the calculated orbitals and occupation numbers occurred between ϵ_q and ϵ_{q+1} was then used to determine the condensate properties for that system.

A second potential source of error arises in treating $\rho_i(r, r')$ (which is an infinite matrix) as a finite matrix. Since the trapped systems are spatially finite, the probability of finding a particle beyond the average radius, R, of the cloud goes to zero very quickly. For the same reason, $\rho_i(r, r') \approx 0$ when either $r > R$ or $r' > R$. It is therefore, safe to treat $\rho_i(r, r')$ as a finite matrix. As a brute force test of this assertion, we evaluated several systems with increasingly large cutoff values. We found no significant change in condensate properties calculated from an OBDM where $r, r' \leq R$ and $r, r' \leq 2R$.

The statistical error associated with a given orbital and its occupation are obtained as follows. When the initial OBDM, ρ^0, is calculated the variance associated with each matrix element in ρ^0 is obtained. The original ρ^0 is assumed to represent a randomly sampled event from a gaussian error distribution surrounding the true OBDM. Based on this assertion, a set of M new OBDM’s, $\{\rho^1 \ldots \rho^M\}$, are then generated by allowing each matrix element to randomly vary according to its statistical error. Each of the new OBDM, ρ^q, are diagonalized to obtain their corresponding eigenvalues, n_i^q and eigenvectors ϕ_i^q. An average occupation, $\overline{n_i} = 1/M \sum_q n_i^q$, and orbital, $\overline{\phi_i} = \sum_q \phi_i^q$, are then obtained. The variance of these averages is then used as an estimate of the statistical error of the orbitals and occupation numbers of ρ^0.

III. RESULTS

A. DMC Energy

Figure 2 shows the energy per particle calculated by diffusion Monte Carlo, E_{DMC}, by variational Monte Carlo (using the simple trial function of [50]), E_{VMC0}, and using the Gross-Pitaevskii equation, E_{GP}, of trapped hard core Bosons as a function of maximum density, na3, in the trap. Density is varied by changing scattering length, a, 4.3 x 10^{-3} < a/aho < 0.14 where aho is the trap length. At higher densities E_{DMC} clearly lies above E_{GP}, 3% at na3 = 10^{-3}. E_{VMC0} and E_{DMC} differ by 0.3% at na3 = 10^{-3}.

Figure 3 shows the percent difference between E_{DMC} and E_{GP}, $\delta E/E_{GP} = (E_{DMC} - E_{GP})/E_{GP}$ for N = 128 hard sphere Bosons in a spherically symmetric harmonic trap at higher densities, na3. The difference between DMC and GP energies is well described by $\delta E/E_{GP} \propto (na^3)^{2/3}$. This dependence holds even up to trap densities of na3 \approx 0.32, well above the density of liquid helium (na3 \approx 0.21). At this density, E_{GP} and E_{DMC} differ by as much as 80%.

In Figure 4, the dependence of $\delta E/E_{GP}$ on the scattering length, a, for N = 128 Bosons in a spherically symmetric harmonic trap is shown. The figure shows good agreement with $\delta E \propto (a/aho)^{8/5}$. This is precisely the power law relation predicted by the first-order correction to the Gross-Pitaevskii energy which takes into account particles above the condensate, denoted the modified Gross-Pitaevskii equation (MGP) energy [15].

Figure 5 shows the dependence of $\delta E = E_{DMC} - E_{GP}$ on the number of particles, N, in the trap. In this plot, the ratio of the scattering length to the characteristic length of the trap is $a/aho = 8 \times a_{Rb}/aho = 0.03464$.

FIG. 2: Diffusion Monte Carlo, E_{DMC}, variational Monte Carlo, E_{VMC0}, and Gross-Pitaevskii, E_{GP}, energies for trapped hard sphere Bosons as a function of maximum density, na3, in the trap. Density is varied by changing scattering length, 4.3 x 10^{-3} < a/aho < 0.14 where aho is the trap length. At higher densities E_{DMC} clearly lies above E_{GP}, 3% at na3 = 10^{-3}. E_{VMC0} and E_{DMC} differ by 0.3% at na3 = 10^{-3}.

FIG. 3: Percent difference between diffusion Monte Carlo, E_{DMC}, and Gross-Pitaevskii, E_{GP}, energies for hard core Bosons in a spherically symmetric harmonic trap as a function of maximum density na3 in the trap. The % difference between DMC and GP energies is well described by $\delta E/E_{GP} \propto (na^3)^{2/3}$ (dashed line).

FIG. 4: Dependence of $\delta E = (E_{DMC} - E_{GP})$ on the ratio of the scattering length, a, to the trap length, aho = ($\hbar/m\omega_{ho}$)$^{1/2}$, for N = 128 Bosons in a spherically symmetric harmonic trap. The dashed line shows $\delta E/E_{GP} \propto (a/aho)^{8/5}$.

FIG. 5: Dependence of $\delta E = E_{DMC} - E_{GP}$ on the number of particles, N, in the trap. The ratio of the scattering length to the characteristic length of the trap is $a/aho = 8 \times a_{Rb}/aho = 0.03464$.

Figure Captions:

- **Figure 2:** Shows the energy per particle calculated by diffusion Monte Carlo, E_{DMC}, by variational Monte Carlo, E_{VMC0}, and Gross-Pitaevskii, E_{GP}, for trapped hard sphere Bosons as a function of maximum density, na3, in the trap. The difference between E_{DMC} and E_{GP} is well described by $\delta E/E_{GP} \propto (na^3)^{2/3}$. This dependence holds even up to trap densities of na3 \approx 0.32, well above the density of liquid helium (na3 \approx 0.21). At this density, E_{GP} and E_{DMC} differ by as much as 80%.

- **Figure 3:** Shows the percent difference between E_{DMC} and E_{GP}, $\delta E/E_{GP} = (E_{DMC} - E_{GP})/E_{GP}$ for N = 128 hard sphere Bosons in a spherically symmetric harmonic trap at higher densities, na3. The difference between DMC and GP energies is well described by $\delta E/E_{GP} \propto (na^3)^{2/3}$.

- **Figure 4:** Shows the dependence of $\delta E/E_{GP}$ on the scattering length, a, for N = 128 Bosons in a spherically symmetric harmonic trap. The figure shows good agreement with $\delta E \propto (a/aho)^{8/5}$. This is precisely the power law relation predicted by the first-order correction to the Gross-Pitaevskii energy which takes into account particles above the condensate, denoted the modified Gross-Pitaevskii equation (MGP) energy [15].

- **Figure 5:** Shows the dependence of $\delta E = E_{DMC} - E_{GP}$ on the number of particles, N, in the trap. In this plot, the ratio of the scattering length to the characteristic length of the trap is $a/aho = 8 \times a_{Rb}/aho = 0.03464$.

Notes:

1. The energy per particle calculated by diffusion Monte Carlo, E_{DMC}, by variational Monte Carlo, E_{VMC0}, and Gross-Pitaevskii, E_{GP}, for trapped hard sphere Bosons as a function of maximum density, na3, in the trap. Density is varied by changing scattering length, a, 4.3 x 10^{-3} < a/aho < 0.14 where aho is the trap length. At higher densities E_{DMC} clearly lies above E_{GP}, 3% at na3 = 10^{-3}. E_{VMC0} and E_{DMC} differ by 0.3% at na3 = 10^{-3}.

2. Figure 3 shows the percent difference between E_{DMC} and E_{GP}, $\delta E/E_{GP} = (E_{DMC} - E_{GP})/E_{GP}$ for N = 128 hard sphere Bosons in a spherically symmetric harmonic trap at higher densities, na3. The difference between DMC and GP energies is well described by $\delta E/E_{GP} \propto (na^3)^{2/3}$. This dependence holds even up to trap densities of na3 \approx 0.32, well above the density of liquid helium (na3 \approx 0.21). At this density, E_{GP} and E_{DMC} differ by as much as 80%.

3. In Figure 4, the dependence of $\delta E/E_{GP}$ on the scattering length, a, for N = 128 Bosons in a spherically symmetric harmonic trap is shown. The figure shows good agreement with $\delta E \propto (a/aho)^{8/5}$. This is precisely the power law relation predicted by the first-order correction to the Gross-Pitaevskii energy which takes into account particles above the condensate, denoted the modified Gross-Pitaevskii equation (MGP) energy [15].

4. Figure 5 shows the dependence of $\delta E = E_{DMC} - E_{GP}$ on the number of particles, N, in the trap. In this plot, the ratio of the scattering length to the characteristic length of the trap is $a/aho = 8 \times a_{Rb}/aho = 0.03464$.

References:

The resulting range of densities at the center of the trap lie between $na^2 \approx 8 \times 10^{-5}$ for $N = 16$ and $na^3 \approx 6 \times 10^{-4}$ for $N = 1024$. The DMC energy is approximately 2% higher than the GP energy when $N = 1024$. The dashed line is a least squares fit of δE for $32 \leq N \leq 1024$ to a function of the form $q(N) = q_0 + q_1 N^{3/5}$. The relation $\delta E(N) \propto N^{3/5}$ is again consistent with the result obtained from the modified Gross-Pitaevskii equation.

It is interesting to note that for small particle numbers, $N \lesssim 32$, the DMC calculation results in a lower energy than solutions of the GP equation. This does not contradict the results of Lieb and Yngvason [58] who proved that the Bogoliubov mean-field term: $\epsilon/N > 4\pi na^3 h^2/2ma^2$ (i.e. the interaction term in the GP energy functional) is a rigorous lower bound for the ground-state energy of a Bose gas with non-negative, finite range, spherical, two-body potentials. It merely indicates that the mean field approximation inherent in the GP equation (which is only expected to be appropriate in the large N limit) does not apply for such small systems.

The MGP expression for the ground state energy provides the first correction to the GP energy arising from contributions of the noncondensate. If this correction is relevant across the entire range of systems considered, combining the results for the dependence of δE on N and a/a_{ho} as presented in figures 4 and 5 should provide a single coefficient, ξ, such that

$$\delta E = \xi N^{3/5} (a/a_{ho})^{8/5}.$$ \hspace{1cm} (18)

MGP predicts $\xi = 5(15)^{3/5}/(64\sqrt{2}) \approx 0.28$. In Figure 6, the fixed a and fixed N results are shown together along with the MGP prediction for the first order contribution to the ground state energy of atoms depleted from the condensate. The figure demonstrates that for systems with $na^3 \lesssim 5 \times 10^{-4}$, MGP provides a good description of the DMC corrections to the GP energy. At higher densities, while the fixed a and fixed N results are separately well described by $(a/a_{ho})^{8/5}$ and $N^{3/5}$ respectively, they do not share a common coefficient ξ. This suggests that at higher densities corrections to the condensate energy have a more complicated dependence on N and a than (18).

B. Range of validity of VMC0 results

To investigate the range of validity of the VMC0 trial function we evaluated the variance of the Hamiltonian. If the trial function is an exact representation of an eigenstate of the Hamiltonian the variance is zero. Figure 7 provides a comparison of the difference between DMC and VMC0 results for the energy per boson, $(E_{VMC0} - E_{DMC})$, and the variance of the energy per boson, $\sigma(E_{VMC0})$, as a function of the ratio of the hard sphere diameter to the trap length, a/a_{ho}. Results are for $N = 128$ hard core Bosons in a spherically symmetric trap. Up to a value of $a/a_{ho} \approx 0.3$, the DMC and VMC0 energies agree to within the variance of E_{VMC0}. The maximum density of the trapped Bosons for this “critical” value of $a/a_{ho} = 0.3$ is $na^3 \approx 3 \times 10^{-2}$. This indicates that for systems with $na^3 \lesssim 10^{-2}$ the VMC0 trial function not only provides a valid upper bound on the energy but a valid lower bound as well.
of the many-body ground state, size of the condensate itself) [12, 42]. In this section, we compare the present QMC results for the density of the many-body ground state, \(n(r) \), with predictions of mean-field theory for the spatial distribution of the condensate, \(n_0(r) \). While this comparison is not always strictly correct, since depletion of the condensate means \(n(r) \neq n_0(r) \), what is actually observed in experiments is the “total” density which includes condensate and non-condensate atoms alike. The condensate distribution and “total” density have been treated as identical in the analysis of experimental results [40]. For this reason, we will compare \(n(r) \) and mean field results for \(n_0(r) \) as if they are indeed measurements of the same physical quantity.

1. The “width” of a trapped cloud of Bosons

The radius of the condensate as predicted by the Gross-Pitaevskii equation in the Thomas-Fermi limit \((Na >> 1, a/a_{ho} << 1) \) is [15]

\[
R_{TF} = a_{ho}(15N\frac{a}{a_{ho}})^{1/5}. \tag{19}
\]

We have defined the radius of the ground state, \(R_{QMC} \) by setting a cut-off value of the QMC number density, \(n(r) \), so that \(n(R_{QMC}) = 10^{-5} \). Figure 8, shows QMC results for the dependence of the width, \(R/a_{ho} \), of the ground state density of \(N \) hard-core Bosons on the product \((Na/a_{ho})^{1/5}\). In the figure, diamonds show the dependence when the number of particles is fixed, \(N = 128 \), and the hard core diameter, \(a \), is varied, \(4.33 \times 10^{-3} < a/a_{ho} < 1.11 \). The dashed line is a spline fit to the fixed-\(a \) data to guide the eye. Circles show the dependence when the hard-core diameter is fixed, \(a/a_{ho} = 0.035 \), and \(N \) is varied, \(32 \leq N \leq 1024 \). The short-dashed and long-dashed lines are linear and spline fits to the fixed-\(a \) and fixed \(N \) data respectively.

C. Spatial distribution of trapped Bosons

The spatial distribution of trapped Bosons is a property which is accessible to experimental observation. The first observations of BEC used the difference between a classical Boltzmann distribution and a condensate distribution as evidence for the existence of BEC [12–14]. Spatial resolution in most observations to date is, however, not very high (typically only \(O(10^{-1}) \) times the size of the condensate itself) [12, 42]. In this section, we compare the present QMC results for the density of the many-body ground state, \(n(r) \), with predictions of mean-field theory for the spatial distribution of the condensate, \(n_0(r) \). While this comparison is not always strictly correct, since depletion of the condensate means \(n(r) \neq n_0(r) \), what is actually observed in experiments is the “total” density which includes condensate and non-condensate atoms alike. The condensate distribution and “total” density have been treated as identical in the analysis of experimental results [40]. For this reason, we will compare \(n(r) \) and mean field results for \(n_0(r) \) as if they are indeed measurements of the same physical quantity.

\[
\sigma(E_{VMC0}) = \left(\frac{\delta E}{N\hbar\omega_{ho}} \right)_{\text{VMC0}} \quad \text{and mean field results for} \quad E_{VMC0}.
\]

FIG. 7: Difference between DMC and VMC0 energies \((E_{VMC0} - E_{DMC}) \) compared with the variance of the VMC0 calculation, \(\sigma(E_{VMC0}) \), as a function of the ratio of the hard sphere diameter to the trap length, \(a/a_{ho} \).

FIG. 8: QMC values of the width, \(R \), of the ground state density of hard-core Bosons in a harmonic trap verses \((Na/a_{ho})^{1/5} \) where \(N \) is the number of particles and \(a \) is the hard core diameter. Diamonds show the dependence when \(N \) is fixed \((N = 128) \) and \(a \) is varied, \(4.33 \times 10^{-3} < a/a_{ho} < 1.11 \). Circles show the dependence when \(a \) is fixed \((a/a_{ho} = 8 \times a_{ho}/a_{bo} \approx 0.035) \) and \(N \) is varied, \(32 \leq N \leq 1024 \). The short-dashed and long-dashed lines are linear and spline fits to the fixed-\(a \) and fixed \(N \) data respectively.
to hold up to the highest number of particles considered (N = 1024).

2. The Total Density Profile

Figure 9 shows the DMC density profiles for 128 hard sphere trapped Bosons for four values of the maximum trap density \(n a^3 \). All plots are for \(N = 128 \) and values of \(a/a_ho = 0.03464, 0.13856, 0.27712, 1.1084 \) for frames (a), (b), (c), and (d) respectively.

FIG. 9: DMC density profiles for hard sphere trapped Bosons for four values of the maximum trap density \(n a^3 \). All plots are for \(N = 128 \) and values of \(a/a_ho = 0.03464, 0.13856, 0.27712, 1.1084 \) for frames (a), (b), (c), and (d) respectively.

FIG. 10: Comparison of total density distribution calculated using diffusion Monte Carlo, \(n_{DMC}(r) \), for hard sphere Bosons in a harmonic trap to the density predicted by the Thomas-Fermi approximation (20). Top frame (a) is for \(N = 1024 \) Bosons with ratio of scattering length to trap length of \(a/a_ho = 8 \times a_{Rb}/a_ho = 0.03464 \). Density is expressed in terms of \(n(r)a^3 \times 10^4 \). Frame (b) is for \(N = 128 \) Bosons with \(a/a_ho = 64 \times a_{Rb} = 0.27712 \). Density is expressed in terms of \(n(r)a^3 \times 10^2 \).

3. Comparison of DMC \(n(r) \) and Thomas-Fermi \(n_{TF}(r) \)

In the so called “Thomas-Fermi” (TF) approximate form of the Gross-Pitaevskii equation, the interaction term \(g \propto Na \) in the GP equation is assumed to dominate the “kinetic energy” or gradient term resulting in an analytically solvable form of the GP equation. The TF approximation is expected to be valid when \(Na \) is large, \(Na >> 1 \), the interaction density is low, \(na^3 << 1 \), and the ratio of the scattering length to the characteristic harmonic trap length is small, \(a/a_ho << 1 \).
Figure 10 shows a comparison of the total density distribution calculated using DMC, \(n_{\text{DMC}}(r) \), to the density predicted by the Thomas-Fermi approximation,

\[
n_{\text{TF}}(r) = \left(\frac{15}{2} N a \right)^{2/3} - x^2 / 8 \pi N a.
\]

(20)

The top frame, (a), shows the density profile for \(N = 1024 \) Bosons with \(a/a_{ho} = 8 \times a_{Rb} = 0.03464 \). Here, the TF and DMC results agree quite well. However, the TF result slightly overestimates the density near the center of the trap and fails to reproduce the low density tail which occurs near the edge of the trapped cloud. Frame (b) shows \(n(r) \) for \(N = 128 \) and \(a/a_{ho} = 64 \times a_{Rb} = 0.27712 \). Note that the product, \(N a/a_{ho} \), (the only variable responsible for determining the shape of the TF and GP density profiles) is the same in both frames. Clearly, in the bottom frame, the TF approximation dramatically overestimates the density at the center of the trap and underestimates the width of the condensate.

D. Condensate fraction

Figure 11 shows the condensate fraction, \(n_0 \), as a function of the density, \(n a^3 \), for \(N = 128 \) trapped hard sphere Bosons. Here \(n \) is the number density at the center of the trap and \(a \) is the scattering length. Circles are from the mean-field Bogoliubov (MFB) expression for \(n_0 \) in a uniform dilute Bose gas integrated over the TF density. The up and down-facing triangles are the corresponding values of \(n_0 \) at the uniform trap and fails to reproduce the low density tail which \(n_0 \) goes to zero while \(n a^3 \) is lower than either the VMC0 or MFB estimates. We believe that the DMC result for \(n_0 \) is lower than either VMC and MFB because it is able to treat local pair correlations more accurately. Pair correlations allow the total energy to decrease at the expense of long range order. Since DMC is able to sample the exact ground state, the mixed estimate for \(n_0 \) obtained from DMC is more accurate than VMC or MFB.

Figure 12 shows \(n_0 \) over a wider density range. Here \(n \) is again the maximum number density in the trap. At high densities the maximum density in the trap is not always at the center of the trap. As in the dilute regime presented in figure 11, MFB consistently overestimates the condensate fraction for most densities. At \(n a^3 \approx 0.28 \), however, the MFB estimate of \(n_0 \) goes to zero while both VMC and DMC still show a condensate fraction of \(n_0 \approx 10\% \). The MFB estimate goes to zero because the TF density profile used to calculate the MFB value of \(n_0 \) does not have a broad low density region near the surface of the trapped cloud of atoms as do the DMC

\[
n_0 = 1 - 0.3798 (N a/a_{ho})^{6/5} / N.
\]

(21)

Circles are the mean-field Bogoliubov (MFB) result for a uniform dilute Bose gas integrated over the GP density in the Thomas-Fermi limit [59] obtained by solving

\[
n_0 = 1 - 0.3798 (N a/a_{ho})^{6/5} / N.
\]

The up and down-facing triangles are the DMC and VMC0 results, respectively, obtained from diagonalizing the OBDM. For \(n a^3 < 10^{-4} \), all three values of \(n_0 \) agree to within 1%. At higher densities, the MFB result consistently overestimates the condensate fraction. MFB overestimates the condensate fraction because it ignores local pair correlations which act to deplete the condensate. In contrast the DMC value of the condensate is consistently lower than either the VMC0 or MFB estimates. We believe that the DMC result for \(n_0 \) is lower than either VMC and MFB because it is able to treat local pair correlations more accurately. Pair correlations allow the total energy to decrease at the expense of long range order. Since DMC is able to sample the exact ground state, the mixed estimate for \(n_0 \) obtained from DMC is more accurate than VMC or MFB.

FIG. 11: Condensate fraction, \(n_0 \), as a function of the density, \(n a^3 \), for \(N = 128 \) trapped hard sphere Bosons. Here \(n \) is the number density at the center of the trap and \(a \) is the scattering length. Circles are from the mean-field Bogoliubov (MFB) expression for \(n_0 \) in a uniform dilute Bose gas integrated over the TF density. The up and down-facing triangles are the DMC and VMC results respectfully. Dashed lines are spline fits to guide the eye.

FIG. 12: Condensate fraction, \(n_0 \), over a wide density range. The legend is the same as Fig. 11.
TABLE I: Condensate fraction as obtained from mean-field-Bogoliubov (MFB), VMC, and DMC methods.

<table>
<thead>
<tr>
<th>$n a^3$</th>
<th>a/a_ho</th>
<th>MFB</th>
<th>VMC</th>
<th>DMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3×10^{-6}</td>
<td>1</td>
<td>0.998</td>
<td>0.999(9)</td>
<td>0.99(9)</td>
</tr>
<tr>
<td>4.6×10^{-5}</td>
<td>4</td>
<td>0.992</td>
<td>0.992(4)</td>
<td>0.99(2)</td>
</tr>
<tr>
<td>2.5×10^{-4}</td>
<td>8</td>
<td>0.983</td>
<td>0.977(8)</td>
<td>0.97(7)</td>
</tr>
<tr>
<td>2.5×10^{-3}</td>
<td>16</td>
<td>0.959</td>
<td>0.942(1)</td>
<td>0.94(2)</td>
</tr>
<tr>
<td>2.4×10^{-2}</td>
<td>64</td>
<td>0.785</td>
<td>0.745(7)</td>
<td>0.70(2)</td>
</tr>
<tr>
<td>1.1×10^{-1}</td>
<td>128</td>
<td>0.506</td>
<td>0.476(5)</td>
<td>0.3(5)</td>
</tr>
<tr>
<td>3.2×10^{-1}</td>
<td>256</td>
<td>N/A</td>
<td>0.160(0)</td>
<td>0.1(0)</td>
</tr>
</tbody>
</table>

MFB predicts a negative condensate fraction for this system.

and VMC density distributions. As will be shown in the next section, the dilute region at the “edge” of the trapped cloud can support a condensate even when the condensate fraction in the dense center of the trap goes to zero.

The density corresponding to liquid helium at SVP ($n a^3 = 0.21$) is indicated on the plot. At this density, VMC gives a condensate fraction of $n_0 \approx 25\%$ while DMC estimates a condensate fraction of $n_0 \approx 18\%$. In bulk liquid 4He, the condensate fraction is $n_0 \approx 7.25\%$ [8]. This difference is explained by the fact that the dilute region near the surface of the trapped cloud allows for a larger fraction of particles to occupy the condensate orbital than in an uniform system at 4He densities.

Table I summarizes the present DMC and VMC results for the condensate fraction over a wide density range.

E. Spatially dependent depletion of the condensate

In figure 13 we compare the total density distribution, $n(r)$, to the condensate distribution, $n_0(r) = n_0 |\phi_0(r)|^2$, for $N = 128$ hard sphere Bosons in a harmonic trap calculated using diffusion Monte Carlo. In the top frame, $a/a_ho = 64 \times a_R/a_ho$ giving a maximum density in the trap of $n a^3 \approx 2.4 \times 10^{-2}$ and total condensate fraction of $n_0 \approx 70\%$. In this system, the spatial distribution of the condensate follows the shape of the total density distribution except at small r. It is worth noting that while the total density exhibits local correlations in the dense region near the center of the trap, the condensate distribution is relatively flat in this region. In the bottom frame of the figure, $a/a_ho = 256 \times a_R/a_ho = 1.1084$ resulting in a maximum density of $n a^3 \approx 0.325$ and a condensate fraction of $n_0 \approx 10\%$. This is the same system shown in frame (d) of figure 9. As discussed above, the DMC results at this density are biased by the VMC guiding function used. Nevertheless, we believe the results to be qualitatively correct. Here, strong pair correlations have completely depleted the condensate in the center of the trap but the relatively dilute region near the edge of the trap is still able to support a condensate. We find that for trapped hard sphere Bosons, the local condensate fraction, $n_0(r)/n(r)$, rises in the dilute region near the surface and remains close to one all the way to the surface of the cloud. This may be contrasted with predictions for $n_0(r)/n(r)$ for self-bound superfluid 4He at a free surface in which surface correlations significantly deplete the condensate at the liquid-vacuum interface [32, 33].

![FIG. 13: Comparison of total density distribution, $n(r)$, to condensate distribution, $n_0(r) = |\phi(r)|^2$, for $N = 128$ hard sphere Bosons in a harmonic trap calculated using diffusion Monte Carlo. Circles are the total density while triangles represent the condensate. Dashed lines are spline fits to guide the eye. In the top frame, the maximum density in the trap is $n a^3 \approx 2.4 \times 10^{-2}$ and the total condensate fraction is $n_0 \approx 70\%$. In the bottom frame, $n a^3 \approx 2.4 \times 10^{-2}$ and $n_0 \approx 10\%$.](image-url)
densities and to determine the limits of the mean-field description of the condensate properties. To this end, we have employed quantum Monte-Carlo (QMC) methods and the one-body density matrix (OBDM) formulation of BEC. We find the OBDM description of a many-body Bose system combined with QMC techniques, provides a coherent method for the study of the ground state properties and Bose-Einstein condensation in traps from the dilute to the very dense regime. By comparing our QMC results with mean-field theory we determine key limits of the mean field description.

A. The ground state energy

We find that in the dilute limit, \(na^3 \lesssim 10^{-4} \), where the condensate depletion is small, \(a_0 \gtrsim 99\% \), the GP description of the condensate provides a good description of the full many-body ground state for systems with more than 30 Bosons. Once the density has reached, \(na^3 \approx 10^{-3} \), approximately 6% of the atoms lie outside of the condensate and the condensate energy obtained from GP theory lies 3% below the QMC energy. For \(na^3 \gtrsim 10^{-3} \), the GP energy does not describe the energy of the Bosons in the trap accurately. The present QMC corrections to the GP energy, \(\delta E = E_{DMC} - E_{GP} \), are proportional to \(N^{3/5} \) when \(N \) is allowed to vary with fixed \(a \) and are proportional to \((a/a_{ho})^{8/5} \) when \(a \) is allowed to vary with fixed \(N \). This dependence on \(N \) and \(a \) holds for all densities studied (\(10^{-6} < na^3 < 0.5 \)) and is consistent with the expected corrections to the GP energy arising from the depletion of the condensate (18). Thus, the GP description of the condensate energy appears to be valid even in the highly interacting regime. However, the dependence of \(\delta E \) on the product \(N^{3/5}(a/a_{ho})^{8/5} \), as predicted by MGP (18), holds up to densities \(na^3 \approx 5 \times 10^{-4} \) only. As interaction is increased the effects of the non-condensate play an increasingly significant role in determining the properties of the total ground state and a more complicated functional dependence of \(\delta E(N,a) \) than the simple product \(N^{3/5}(a/a_{ho})^{8/5} \) is required at higher densities.

For small particle numbers, \(N \lesssim 30 \), the GP results for the energy lie above the ground state energy obtained from DMC. The present QMC results indicate that GP theory predicts an energy which is as much as 2% higher than the ground state energy for a system with \(N = 16 \) particles and ratio of scattering length to trap length of \(a/a_{ho} = 8 \times a_{Rb}/a_{ho} = 0.03464 \). While it is generally understood that GP theory is only valid in the limit of large \(N \) this result indicates that, for moderately strong interactions, \(N \gtrsim 30 \) is large enough for GP to hold. The failure of the GP description for small \(N \) is especially relevant to recent experimental studies of BEC in an optical lattice [60] where the number of Bosons per lattice site \(\tilde{N} \approx 2.5 \) is well below \(N = 30 \). We expect that in such a system, even in the superfluid phase where the lattice potential is weak, GP theory will fail to describe local correlations between the Bosons at each lattice site correctly.

B. Deviations from the mean-field description

Figure 14 contains striped bands indicating regions in \(a/a_{ho} \) where QMC results diverge from mean-field / Bogoliubov predictions. Since the degree of depletion of the condensate arising from inter-Boson interaction plays a significant role in determining beyond-mean-field effects, QMC values for the number of atoms outside the condensate, \(\tilde{N} \), for a system with a total of \(N = 128 \) Bosons are shown along with the regions. The first sign of divergence (a) occurs at a density of \(na^3 \approx 3 \times 10^{-4} \) and a value of \(a/a_{ho} \approx 3 \times a_{Rb}/a_{ho} \approx 0.035 \). At this density, QMC and MFB (21) results for the condensate fraction, \(n_0 = N_0/N \), begin to diverge (see figure 11.). Below this value of \(a/a_{ho} \), QMC and MFB values of \(n_0 \) agree to within 1%. At \(na^3 \approx 10^{-3} \), MFB underestimates the depletion of the condensate by 30%. At higher densities, \(na^3 \approx 10^{-1} \), MFB predicts a condensate fraction 40% higher than QMC.

The second point of interest in figure 14 marked (b) occurs in the region of \(na^3 \approx 2.5 \times 10^{-3} \) and \(a/a_{ho} \approx 0.12 \). Near this value of \(a/a_{ho} \), QMC results for the size of the
many-body ground state and mean-field results for the size of the condensate (19) begin to differ. For values of $a/a_{ho} \lesssim 0.12$, the width of the many-body ground state is proportional to $(Na/a_{ho})^{1/5}$ as predicted by mean-field theory. At higher values, $(a/a_{ho} > 0.12)$, we find that the size of the condensate is better described by a scaling of $(a/a_{ho})^{3/5}$. The scaling is shown in figure 8 and discussed in Section III C1. Thus, for systems with $na^3 \gtrsim 10^{-3}$, GP theory in the TF limit under-estimates the growth of the size of the ground state with a/a_{ho} significantly. In the extreme range of very large scattering length or very tight trapping potential where $a/a_{ho} = 1$, GP predicts a condensate distribution 20% smaller than the width of the ground state obtained from QMC.

The band (c) in figure 14 indicates the region in which local correlations in the density profile of the many-body ground state begin to appear. These local correlations signal a clear departure from mean-field properties. This effect occurs for systems with trap densities of $na^3 \gtrsim 2.5 \times 10^{-2}$ and $a/a_{ho} \approx 64 \times a_{Rb}/a_{ho} \approx 0.28$. At this level of interaction the condensate fraction as obtained from DMC is $n_0 \approx 70\%$. We find that at this density the condensate density is smoothly varying throughout the trap with little or no local density fluctuations (See top frame of Fig. 13). Evidence that the condensate distribution does not explicitly follow the total density distribution is another demonstration that a local density approximation description of the condensate breaks down at this density.

The band marked (d) in figure 14 approximates the region in which the condensate begins to shift from the center of the trap to the surface. Here, $na^3 \approx 0.2$ and $a/a_{ho} \approx 0.8$. The condensate fraction is $n_0 \approx 20\%$. At this level of interaction and beyond, mean-field approximations and the Bogoliubov approximation both fail to appropriately describe the properties of a trapped BEC. We speculate that at this density, the increased depletion in the center of the trap could effectively pin vortex states.

The final point of interest in figure 14 occurs in the region marked by the band (e). For systems with $na^3 \gtrsim 0.3$ and $a/a_{ho} \gtrsim 256 \times a_{Rb}/a_{ho} \approx 1.1$, the condensate exists only in dilute region near surface of trapped cloud. Strong pair correlations have completely depleted the condensate in the center of the trap but the relatively dilute region near the edge of the trap is still able to support a condensate. Figure 13 presents DMC results which demonstrate this phenomena.

Acknowledgments

Stimulating discussions with J. Boronat and S. A. Chin are gratefully acknowledged. Partial support from National Science Foundation DMR-0115663 is gratefully acknowledged.