3.1 Microcanonical, Canonical, Grand Canonical Ensembles

In statistical mechanics, we deal with a situation in which even the quantum state of the system is unknown. The expectation value of an observable must be averaged over:

$$\langle O \rangle = \sum_i w_i |i \rangle \langle i| O |i \rangle$$

(3.1)

where the states $|i \rangle$ form an orthonormal basis of \mathcal{H} and w_i is the probability of being in state $|i \rangle$. The w_i's must satisfy $\sum w_i = 1$. The expectation value can be written in a basis-independent form:

$$\langle O \rangle = Tr \{ \rho O \}$$

(3.2)

where ρ is the density matrix. In the above example, $\rho = \sum_i w_i |i \rangle \langle i|$. The condition, $\sum w_i = 1$, i.e. that the probabilities add to 1, is:

$$Tr \{ \rho \} = 1$$

(3.3)

We usually deal with one of three ensembles: the microcanonical ensemble, the canonical ensemble, or the grand canonical ensemble. In the microcanonical ensemble,
we assume that our system is isolated, so the energy is fixed to be E, but all states with energy E are taken with equal probability:

$$\rho = C \delta(H - E) \tag{3.4}$$

C is a normalization constant which is determined by (3.3). The entropy is given by,

$$S = -\ln C \tag{3.5}$$

In other words,

$$S(E) = \ln \left(\# \text{ of states with energy } E \right) \tag{3.6}$$

Inverse temperature, $\beta = 1/(k_B T)$:

$$\beta \equiv \left(\frac{\partial S}{\partial E} \right)_V \tag{3.7}$$

Pressure, P:

$$\frac{P}{k_B T} \equiv \left(\frac{\partial S}{\partial V} \right)_E \tag{3.8}$$

where V is the volume.

First law of thermodynamics:

$$dS = \frac{\partial S}{\partial E} dE + \frac{\partial S}{\partial V} dV \tag{3.9}$$

$$dE = k_B T \, dS - P \, dV \tag{3.10}$$

Free energy:

$$F = E - k_B T S \tag{3.11}$$

Differential relation:

$$dF = -k_B S \, dT - P \, dV \tag{3.12}$$

or,

$$S = -\frac{1}{k_B} \left(\frac{\partial F}{\partial T} \right)_V \tag{3.13}$$
Chapter 3: Review of Statistical Mechanics

\[P = - \left(\frac{\partial F}{\partial V} \right)_T \]

while

\[
E = F + k_B T S \\
= F - T \left(\frac{\partial F}{\partial T} \right)_V \\
= -T^2 \frac{\partial^2 F}{\partial T^2} \frac{1}{T}
\]

(3.15)

In the canonical ensemble, we assume that our system is in contact with a heat reservoir so that the temperature is constant. Then,

\[\rho = C e^{-\beta H} \]

(3.16)

It is useful to drop the normalization constant, \(C \), and work with an unnormalized density matrix so that we can define the partition function:

\[Z = \text{Tr} \{ \rho \} \]

(3.17)

or,

\[Z = \sum_a e^{-\beta E_a} \]

(3.18)

The average energy is:

\[
E = \frac{1}{Z} \sum_a E_a e^{-\beta E_a} \\
= -\frac{\partial}{\partial \beta} \ln Z \\
= -k_B T^2 \frac{\partial^2}{\partial T^2} \ln Z
\]

(3.19)

Hence,

\[F = -k_B T \ln Z \]

(3.20)

The chemical potential, \(\mu \), is defined by

\[\mu = \frac{\partial F}{\partial N} \]

(3.21)
where \(N \) is the particle number.

In the grand canonical ensemble, the system is in contact with a reservoir of heat \textit{and} particles. Thus, the temperature and chemical potential are held fixed and

\[
\rho = C e^{-\beta(H-\mu N)} \tag{3.22}
\]

We can again work with an unnormalized density matrix and construct the grand canonical partition function:

\[
Z = \sum_{N,a} e^{-\beta(E_a-\mu N)} \tag{3.23}
\]

The average number is:

\[
N = -k_B T \frac{\partial}{\partial \mu} \ln Z \tag{3.24}
\]

while the average energy is:

\[
E = - \frac{\partial}{\partial \beta} \ln Z + \mu k_B T \frac{\partial}{\partial \mu} \ln Z \tag{3.25}
\]

3.2 Bose-Einstein and Planck Distributions

3.2.1 Bose-Einstein Statistics

For a system of free bosons, the partition function

\[
Z = \sum_{E_a,N} e^{-\beta(E_a-\mu N)} \tag{3.26}
\]

can be rewritten in terms of the \textit{single-particle eigenstates} and the single-particle energies \(\epsilon_i \):

\[
E_a = n_0 \epsilon_0 + n_1 \epsilon_1 + \ldots \tag{3.27}
\]

\[
Z = \sum_{\{n_i\}} e^{-\beta(\sum_i n_i \epsilon_i - \mu \sum_i n_i)}
= \prod_i \left(\sum_{n_i} e^{-\beta(n_i \epsilon_i - \mu n_i)} \right)
\]
\[\prod_i \frac{1}{1 - e^{-\beta(\epsilon_i - \mu)}} \]
(3.28)

\[\langle n_i \rangle = \frac{1}{e^{\beta(\epsilon_i - \mu)} - 1} \]
(3.29)

The chemical potential is chosen so that

\[N = \sum_i \langle n_i \rangle \]

\[= \sum_i \frac{1}{e^{\beta(\epsilon_i - \mu)} - 1} \]
(3.30)

The energy is given by

\[E = \sum_i \langle n_i \rangle \epsilon_i \]

\[= \sum_i \frac{\epsilon_i}{e^{\beta(\epsilon_i - \mu)} - 1} \]
(3.31)

\(N \) is increased by increasing \(\mu \) (\(\mu \leq 0 \) always). Bose-Einstein condensation occurs when

\[N > \sum_{i \neq 0} \langle n_i \rangle \]
(3.32)

In such a case, \(\langle n_0 \rangle \) must become large. This occurs when \(\mu = 0 \).

3.2.2 The Planck Distribution

Suppose \(N \) is not fixed, but is arbitrary, e.g. the numbers of photons and neutrinos are not fixed. Then there is no Lagrange multiplier \(\mu \) and

\[\langle n_i \rangle = \frac{1}{e^{\beta \epsilon_i} - 1} \]
(3.33)

Consider photons (two polarizations) in a cavity of side \(L \) with \(\epsilon_k = \hbar \omega_k = \hbar ck \) and

\[k = \frac{2\pi}{L} (m_x, m_y, m_z) \]
(3.34)

\[E = 2 \sum_{m_x, m_y, m_z} \omega_{m_x, m_y, m_z} \langle n_{m_x, m_y, m_z} \rangle \]
(3.35)
Chapter 3: Review of Statistical Mechanics

We can take the thermodynamic limit, \(L \rightarrow \infty \), and convert the sum into an integral. Since the allowed \(\vec{k} \)'s are \(\frac{2\pi}{L} (m_x, m_y, m_z) \), the \(\vec{k} \)-space volume per allowed \(\vec{k} \) is \((2\pi)^3/L^3\). Hence, we can take the infinite-volume limit by making the replacement:

\[
\sum_k f(\vec{k}) = \frac{1}{(\Delta \vec{k})^3} \sum_k f(\vec{k}) (\Delta \vec{k})^3 = \frac{1}{L^3} \int d^3 \vec{k} f(\vec{k})
\]

Hence,

\[
E = 2V \int_{\epsilon_{\text{max}}}^{\hbar \omega_{\epsilon_{\text{max}}}} d^3k \frac{\hbar \omega_k}{e^{\beta \hbar \omega_k} - 1} = 2V \int_{0}^{\hbar \omega_{\epsilon_{\text{max}}}} d^3k \frac{\hbar \omega_k}{e^{\beta \hbar \omega_k} - 1} = \frac{V k_B^4}{\pi^2 (\hbar c)^3} T^4 \int_{0}^{\epsilon_{\text{max}}} x^3 dx e^x - 1 \quad (3.37)
\]

For \(\beta \hbar c \epsilon_{\text{max}} \gg 1 \),

\[
E = \frac{V k_B^4}{\pi^2 (\hbar c)^3} T^4 \int_{0}^{\infty} x^3 dx e^x - 1 \quad (3.38)
\]

and

\[
C_V = 4V k_B^3 \frac{3k_B T}{\pi^2 (\hbar c)^3} \int_{0}^{\epsilon_{\text{max}}} x^3 dx e^x - 1 \quad (3.39)
\]

For \(\beta \hbar c \epsilon_{\text{max}} \ll 1 \),

\[
E = \frac{V k_{\text{max}}^3}{3\pi^2} k_B T \quad (3.40)
\]

and

\[
C_V = \frac{V k_{\text{max}}^3 k_B}{3\pi^2} \quad (3.41)
\]

3.3 Fermi-Dirac Distribution

For a system of free fermions, the partition function

\[
Z = \sum_{E_n} e^{-\beta (E_n - \mu_N)} \quad (3.42)
\]
can again be rewritten in terms of the single-particle eigenstates and the single-particle energies ϵ_i:

$$E_a = n_0 \epsilon_0 + n_1 \epsilon_1 + \ldots$$ \hspace{1cm} (3.43)

but now

$$n_i = 0, 1$$ \hspace{1cm} (3.44)

so that

$$Z = \sum_{\{n_i\}} e^{-\beta (\sum n_i \epsilon_i - \mu \sum n_i)}$$

$$= \prod_i \left(\sum_{n_i=0}^{1} e^{-\beta (n_i \epsilon_i - \mu n_i)} \right)$$

$$= \prod_i \left(1 + e^{-\beta (\epsilon_i - \mu)} \right)$$ \hspace{1cm} (3.45)

$$\langle n_i \rangle = \frac{1}{e^{\beta (\epsilon_i + \mu)} + 1}$$ \hspace{1cm} (3.46)

The chemical potential is chosen so that

$$N = \sum_i \frac{1}{e^{\beta (\epsilon_i + \mu)} + 1}$$ \hspace{1cm} (3.47)

The energy is given by

$$E = \sum_i \frac{\epsilon_i}{e^{\beta (\epsilon_i + \mu)} + 1}$$ \hspace{1cm} (3.48)

3.4 Thermodynamics of the Free Fermion Gas

Free electron gas in a box of side L:

$$\epsilon_k = \frac{\hbar^2 k^2}{2m}$$ \hspace{1cm} (3.49)

with

$$k = \frac{2\pi}{L} (m_x, m_y, m_z)$$ \hspace{1cm} (3.50)
Then, taking into account the 2 spin states,

\[
E = 2 \sum_{m_x, m_y, m_z} \epsilon_{m_x, m_y, m_z} \langle n_{m_x, m_y, m_z} \rangle
\]

\[
= 2V \int_{k_{\text{max}}}^{k_{\text{max}}} d^3k \frac{\hbar^2 k^2}{(2\pi)^3} \frac{1}{e^{\beta (\frac{\hbar^2 k^2}{2m} - \mu)} + 1}
\]

(3.51)

\[
N = 2V \int_{k_{\text{max}}}^{k_{\text{max}}} d^3k \frac{1}{(2\pi)^3} \frac{1}{e^{\beta (\frac{\hbar^2 k^2}{2m} - \mu)} + 1}
\]

(3.52)

At \(T = 0\),

\[
\frac{1}{e^{\beta (\frac{\hbar^2 k^2}{2m} - \mu)} + 1} = \theta \left(\mu - \frac{\hbar^2 k^2}{2m} \right)
\]

(3.53)

All states with energies less than \(\mu\) are filled; all states with higher energies are empty.

We write

\[
k_F = \frac{\sqrt{2m\mu_{T=0}}}{\hbar}, \quad \epsilon_F = \mu_{T=0}
\]

(3.54)

\[
\frac{N}{V} = 2 \int_0^{k_F} \frac{d^3k}{(2\pi)^3} = \frac{k_F^2}{3\pi^2}
\]

(3.55)

\[
\frac{E}{V} = 2 \int_0^{k_F} \frac{d^3k}{(2\pi)^3} \frac{\hbar^2 k^2}{2m}
\]

\[
= \frac{1}{\pi^2} \frac{10m}{3} N
\]

\[
= \frac{5}{3} V \epsilon_F
\]

(3.56)

\[
2 \int \frac{d^3k}{(2\pi)^3} = \frac{m^2 \hbar^2}{\pi^2 h^3} \int d\epsilon \epsilon^2
\]

(3.57)

For \(k_B T \ll \epsilon_F\),

\[
\frac{N}{V} = \frac{m^2 \hbar^2}{\pi^2 h^3} \int_0^{\infty} d\epsilon \epsilon^2 \frac{1}{e^{\beta (\epsilon - \mu)} + 1}
\]

\[
= \frac{m^2 \hbar^2}{\pi^2 h^3} \int_0^\mu d\epsilon \epsilon^2 + \frac{m^2 \hbar^2}{\pi^2 h^3} \int_\mu^\infty d\epsilon \epsilon^2 \left(\frac{1}{e^{\beta (\epsilon - \mu)} + 1} - 1 \right) + \frac{m^2 \hbar^2}{\pi^2 h^3} \int_\mu^{\infty} d\epsilon \epsilon^2 \frac{1}{e^{\beta (\epsilon - \mu)} + 1}
\]
Chapter 3: Review of Statistical Mechanics

To lowest order in H, hence, we will only need

\[\frac{(2m)^3}{3\pi^2 \hbar^3} \mu^2 + \frac{m^3 2^4}{\pi^2 \hbar^3} \int_0^\mu \frac{dt}{e^{\beta(t)}} \frac{1}{e^{\beta(t)} + 1} + \frac{m^3 2^4}{\pi^2 \hbar^3} \int_\mu^\infty \frac{dt}{e^{\beta(t)}} \frac{1}{e^{\beta(t)} + 1} \]

\[\frac{(2m)^3}{3\pi^2 \hbar^3} \mu^2 + \frac{m^3 2^4}{\pi^2 \hbar^3} \int_0^\infty k_B T \frac{dx}{e^x + 1} \left((\mu + k_B T x)^{\frac32} - (\mu - k_B T x)^{\frac32} \right) + O \left(e^{-\beta \mu} \right) \]

\[\frac{(2m)^3}{3\pi^2 \hbar^3} \mu^2 + \frac{(2m)^3}{2^4} \sum \frac{\Gamma \left(\frac32 \right)}{(2n - 1)! \Gamma \left(\frac52 - 2n \right)} \int_0^\infty \frac{dx}{x^{2n - 1}} \]

\[= \frac{(2m)^3}{3\pi^2 \hbar^3} \mu^2 \left[1 + \frac{3}{2} \left(\frac{k_B T}{\mu} \right)^2 I_1 + O \left(T^4 \right) \right] \tag{3.58} \]

with

\[I_k = \int_0^\infty \frac{dx}{x^{k} e^x + 1} \tag{3.59} \]

We will only need

\[I_1 = \frac{\pi^2}{12} \tag{3.60} \]

Hence,

\[(\epsilon_F)^{\frac32} = \mu^4 \left[1 + \frac{3}{2} \left(\frac{k_B T}{\mu} \right)^2 I_1 + O \left(T^4 \right) \right] \tag{3.61} \]

To lowest order in T, this gives:

\[\mu = \epsilon_F \left(1 - \frac{\left(\frac{k_B T}{\epsilon_F} \right)^2 I_1 + O(\epsilon_F^4) }{\epsilon_F^2 \left(\frac{k_B T}{\epsilon_F} \right)^2 + O(\epsilon_F^4)} \right) \tag{3.62} \]
Chapter 3: Review of Statistical Mechanics

\[
= \frac{(2m)^{\frac{3}{2}}}{5\pi^2\hbar^3}\mu^2 \left[1 + \frac{15}{2} \left(\frac{k_B T}{\mu} \right)^2 I_1 + O(T^4) \right] \\
= \frac{3}{5} \frac{N}{V} \epsilon_F \left(1 + \frac{5\pi^2}{12} \left(\frac{k_B T}{\epsilon_F} \right)^2 + O(T^4) \right) \tag{3.63}
\]

Hence, the specific heat of a gas of free fermions is:

\[
C_V = \frac{\pi^2}{2} N k_B \frac{k_B T}{\epsilon_F} \tag{3.64}
\]

Note that this can be written in the more general form:

\[
C_V = (\text{const.}) \cdot k_B \cdot g(\epsilon_F) k_B T \tag{3.65}
\]

The number of electrons which are thermally excited above the ground state is \(\sim g(\epsilon_F) k_B T \); each such electron contributes energy \(\sim k_B T \) and, hence, gives a specific heat contribution of \(k_B \). Electrons give such a contribution to the specific heat of a metal.

3.5 Ising Model, Mean Field Theory, Phases

Consider a model of spins on a lattice in a magnetic field:

\[
H = -g\mu_B B \sum_i S_i^z \equiv 2h \sum_i S_i^z \tag{3.66}
\]

with \(S_i^z = \pm 1/2 \). The partition function for such a system is:

\[
Z = \left(2 \cosh \frac{h}{k_B T} \right)^N \tag{3.67}
\]

The average magnetization is:

\[
S_i^z = \frac{1}{2} \tanh \frac{h}{k_B T} \tag{3.68}
\]

The susceptibility, \(\chi \), is defined by

\[
\chi = \left(\frac{\partial}{\partial h} \sum_i S_i^z \right)_{h=0} \tag{3.69}
\]
For free spins on a lattice,
\[\chi = \frac{1}{2} N \frac{1}{k_B T} \]
(3.70)

A susceptibility which is inversely proportional to temperature is called a Curie susceptibility. In problem set 3, you will show that the susceptibility is much smaller for a system of electrons.

Now consider a model of spins on a lattice such that each spin interacts with its neighbors according to:
\[H = -\frac{1}{2} \sum_{(i,j)} J S_i^z S_j^z \]
(3.71)

This Hamiltonian has a symmetry
\[S_i^z \rightarrow -S_i^z \]
(3.72)

For \(k_B T \gg J \), the interaction between the spins will not be important and the susceptibility will be of the Curie form. For \(k_B T < J \), however, the behavior will be much different. We can understand this qualitatively using mean field theory.

Let us approximate the interaction of each spin with its neighbors by an interaction with a mean-field, \(h \):
\[H = -\sum_i h S_i^z \]
(3.73)

with \(h \) given by
\[h = \sum_i J \langle S_i^z \rangle = J z \langle S_i^z \rangle \]
(3.74)

where \(z \) is the coordination number. In this field, the partition function is just \(2 \cosh \frac{h}{k_B T} \) and
\[\langle S^z \rangle = \tanh \frac{h}{k_B T} \]
(3.75)

Using the self-consistency condition, this is:
\[\langle S^z \rangle = \tanh \frac{J z \langle S^z \rangle}{k_B T} \]
(3.76)
For $k_B T < J_z$, this has non-zero solutions, $S^z \neq 0$ which break the symmetry $S_i^z \rightarrow -S_i^z$. In this phase, there is a spontaneous magnetization. For $k_B T > J_z$, there is only the solution $S^z = 0$. In this phase the symmetry is unbroken and there is no spontaneous magnetization. At $k_B T = J_z$, there is a critical point at which a phase transition occurs.