1. A surface with \(N_0 \) adsorption centers has \(N < N_0 \) gas molecules adsorbed on it, at most one molecule per center. Assume that the canonical partition function for a single adsorbed molecule is known and denote it by \(a(T) \). Neglect interactions between adsorbed molecules. Find the chemical potential of the system:

(a) using the canonical partition function;
(b) using the grand canonical partition function. In this case \(N \) can vary from 0 to \(N_0 \).

2. As a continuation of the previous problem, consider the (ideal) gas which is in equilibrium with the surface. Find the pressure of the gas as a function of the fraction of average number of occupied sites and of temperature.

3. For a single electron in a magnetic field \(B \), the Hamiltonian is

\[
\hat{H} = -\mu_B \mathbf{\sigma} \cdot \mathbf{B}
\]

where \(\mu_B \) is a constant and \(\mathbf{\sigma} \) is the spin operator. Choose the \(z \) axis to be directed along \(B \) and find the expression for the canonical density matrix elements \(\rho_{mn} \) in the representation in which

(a) \(\hat{\sigma}_z \) is diagonal;
(b) \(\hat{\sigma}_x \) is diagonal.

Next, calculate the average value of \(\hat{\sigma}_z \) in both representations.

4. A system with two energy levels is populated by \(N \) distinguishable noninteracting particles at temperature \(T \) with occupations determined by the canonical distribution.

(a) Find the average energy per particle.
(b) Find the behaviour of this energy as \(T \to 0 \) and \(T \to \infty \).
(c) Find the specific heat to the system.
(d) Find the behaviour of the specific heat as \(T \to 0 \) and \(T \to \infty \). Interpret the obtained results.

5. Consider a dilute, noninteracting gas of \(N \) distinguishable diatomic molecules of mass \(m \). Each molecule is a rigid rotor with \((2J + 1) \)-degenerate energy levels \(\epsilon_J = \hbar^2 J(J+1)/2I \), where \(I \) is the moment of inertia. Start from the general expression for the canonical partition function \(Q_N(V, T) = \sum_n e^{-E_n/kT} \) where \(E_n \) is the total energy of \(N \)-molecule system. Calculate then the average energy, the specific heat at constant volume, and the entropy of the system in the limit \(kT \gg \hbar^2/2I \). You may use without proof the partition function for the ideal monoatomic gas \(Q_N^{\text{ideal}}(V, T) = \left[V(2\pi mkT)^{3/2}/\hbar^3 \right]^N \). Hint: In the assumed limit, \(\sum_n f(n) = \int_0^\infty f(x)dx \).
6. Use the Debye model to calculate the internal energy and heat capacity of a one-dimensional atomic solid with length L for both high and low temperature. Assume periodic boundary conditions. The Debye model treats the solid as a set of coupled harmonic oscillators and approximates the unknown normal modes of the system as plane waves propagating with the velocity of sound.

7. Consider a free particle in a box with periodic boundary conditions, in the momentum representation. The particle is in equilibrium with a heat bath and therefore is described by the canonical distribution. Denote the eigenfunctions of the Hamiltonian as

$$
\phi_k(r) = \frac{1}{L^{3/2}} e^{i k \cdot r}
$$

(a) Evaluate matrix elements of $e^{-\beta \hat{H}}$ in the basis $\phi_k(r)$.

(b) Find the canonical partition function in terms of L and $\lambda = \hbar / \sqrt{2\pi mkT}$.

(c) Find the density operator $\hat{\rho}$ in the basis $\phi_k(r)$.

(d) Calculate the average value of \hat{H} as $\text{Tr}(\hat{\rho} \hat{H})$. Express your answer in terms of L, λ, and T.