PHYS 419: Classical Mechanics, Assignment 6
Due 10/19/07

1. Show that
 (a) \(\nabla r^n = nr^{n-1} \mathbf{\hat{r}} \)
 (b) \(\nabla f(r) = \mathbf{\hat{r}} \frac{df}{dr} \)
 (c) \(\nabla^2 \ln r = \frac{1}{r^2} \)

2. Taylor: Problem 4.32.

3. Taylor: Problem 4.36.

4. Use the partial fraction decomposition to calculate the integral
 \(\int \frac{x^2 + x - 2}{3x^3 - x^2 + 3x - 1} \, dx \)

5. A particle moves over the semicircle of radius 1 starting at the point (1,0) while subject to the force \(\mathbf{F} = e^y \mathbf{\hat{x}} + xe^y \mathbf{\hat{y}} \). Calculate first the work performed using explicit line integration. Next, find a shortcut way for getting the answer.

6. Taylor: Problem 4.44.

8. Two bodies of masses \(m_1 \) and \(m_2 \) slide freely on a horizontal frictionless track and are connected by a spring with a force constant \(k \).
 (a) Derive a single Newton equation describing the motion of this system in terms of the expansion of the spring \(\zeta \) from the equilibrium length \(l \).
 (a) Solve this equation and find the frequency of the oscillatory motion of the system.

9. Review problems 8, 9, and 12 of Assignment 0. Do not submit solutions.