1. An small object of mass m moves from point r_A to point r_B along some given path under the action of an external force $F(r)$. Find the relation between the work done by the force and the change of the kinetic energy of the object.

2. A uniform density sphere has initially a mass M and radius R. A spherical hollow is then made in the sphere such that its surface touches the surface of the sphere and passes through its center. A small sphere of mass m is placed outside the sphere a distance d from its center on the straight line which passes through both the center of the sphere and the center of the hollow. Find the force acting on the mass m.

3. A damped harmonic oscillator consists of a block of mass $m = 2.00$ kg attached to a spring with the harmonic constant $k = 10$ N/m (another end of the spring is fixed). The oscillator is in a medium providing a damping force $F = -bv$ at velocity v, where b is a constant. At zero time, the system oscillates with an amplitude of 25.0 cm. After the completion of four periods T, the amplitude falls to 20.0 cm.

 (a) Explain the notion of the amplitude for a damped oscillator.

 (b) Find the value of b.

 (c) Find the value of T.

 (d) Find the value of b.

 (e) Find the value of k.

 (f) Find the value of M.

 (g) Find the value of R.

 (h) Find the value of d.