Helium in confinement: the filling parameter.

A Neutron Scattering investigation.

Francesco Albergamo

Institut Laue-Langevin, France
introduction and motivation
outline

- introduction and motivation
- pressure isotherms technique
 - principle
 - information
outline

- introduction and motivation
- pressure isotherms technique
 - principle
 - information
- inelastic neutron scattering results
the \(\lambda \) transition

<table>
<thead>
<tr>
<th>region</th>
<th>solid phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>hexagonal</td>
</tr>
<tr>
<td>(\beta)</td>
<td>face-centered cubic</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>simple cubic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>point</th>
<th>T(K)</th>
<th>P(bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.172(1)</td>
<td>0.05040(1)</td>
</tr>
<tr>
<td>B</td>
<td>1.7633(1)</td>
<td>30.13(1)</td>
</tr>
<tr>
<td>C</td>
<td>5.19(1)</td>
<td>2.27464(1)</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>25.3(1)</td>
</tr>
<tr>
<td>E</td>
<td>1.7733(1)</td>
<td>30.43(5)</td>
</tr>
<tr>
<td>F</td>
<td>14.9(1)</td>
<td>1280(10)</td>
</tr>
</tbody>
</table>
the λ transition

<table>
<thead>
<tr>
<th>region</th>
<th>solid phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>hexagonal</td>
</tr>
<tr>
<td>β</td>
<td>face-centered cubic</td>
</tr>
<tr>
<td>γ</td>
<td>simple cubic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>point</th>
<th>T(K)</th>
<th>P(bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.172(1)</td>
<td>0.05040(1)</td>
</tr>
<tr>
<td>B</td>
<td>1.7633(1)</td>
<td>30.13(1)</td>
</tr>
<tr>
<td>C</td>
<td>5.19(1)</td>
<td>2.27464(1)</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>25.3(1)</td>
</tr>
<tr>
<td>E</td>
<td>1.7733(1)</td>
<td>30.43(5)</td>
</tr>
<tr>
<td>F</td>
<td>14.9(1)</td>
<td>1280(10)</td>
</tr>
</tbody>
</table>
the λ transition

- superfluidity
 - observed zero viscosity
 - superfluid fraction ρ_s (two-fluid model)
the λ transition

- superfluidity
 - observed zero viscosity
 - superfluid fraction ρ_s (two-fluid model)
- Bose-Einstein Condensation - BEC
 - observed Dirac δ shaped excitations
 - condensate fraction η_0
the λ transition

- superfluidity
 - observed zero viscosity
 - superfluid fraction ρ_s (two-fluid model)

- Bose-Einstein Condensation - BEC
 - observed Dirac δ shaped excitations
 - condensate fraction n_0

bulk helium at SVP

\[T_s = T_{\text{BEC}} = T_\lambda = 2.17 \, K \]
results for confined helium

confinement should deplete BEC...
results for confined helium

confinement should deplete BEC... but results show:

- that T_s reduces with pore size
- no change in microscopic quantities
results for confined helium

confinement should deplete BEC... but results show:
- \(T_s \) reduces with pore size
- no change in microscopic quantities

What actually the sample is?

experimental pressure is SVP; bulk helium is coexisting with its vapour
results for confined helium

confinement should deplete BEC... but results show:

- that \(T_s \) reduces with pore size
- no change in microscopic quantities

What actually the sample is?

experimental pressure is SVP; bulk helium is coexisting with its vapour
(how) does the bulk liquid affect the behaviour of the system?

\(\Rightarrow \text{need for a better knowledge of filling} \)
Calibrated set of volumes
pressure isotherms - principle

- calibrated set of volumes
- good precision pressure measurements
pressure isotherms - principle

- calibrated set of volumes
- good precision pressure measurements
- temperature control
pressure isotherms - principle

- calibrated set of volumes
- good precision pressure measurements
- temperature control
- probe gas equation of state
pressure isotherms - principle

gas handling system

turbo pump
helium bottle
nitrogen trap
buffer volume
baratron volume
cryostat
sample volume
pressure isotherms - principle

1. sample installing

- Turbo pump
- Helium bottle
- Nitrogen trap
- Buffer volume
- Sample volume
- Baratron volume
pressure isotherms - principle

2. outgassing

- Turbo pump
- Helium bottle
- Nitrogen trap
- Buffer volume
- Baratron volume
- Sample volume
pressure isotherms - principle

3. probe gas purification

- Turbo pump
- Helium bottle
- Nitrogen trap
- Buffer volume
- Baratron volume
- Sample volume
- Cryostat
4. buffer filling

- turbo pump
- helium bottle
- nitrogen trap
- buffer volume
- baratron volume
- sample volume
- cryostat

Helium in confinement: the filling parameter. – p.7/13
5. injection volume isolation

- Turbo pump
- Helium bottle
- Nitrogen trap
- Buffer volume
- Baratron volume
- Sample volume
- Cryostat

Helium in confinement: the filling parameter.
pressure isotherms - principle

6. injection

Helium in confinement: the filling parameter. – p.7/13
isotherms - information

\[n_{\text{ads}} = \frac{N_{\text{ads}}}{M} \]

\[p = \frac{P_{\text{eq}}}{P_0(T)} \]

Helium in confinement: the filling parameter. – p.8/13
isotherms - information

\[p = \frac{p_{eq}}{p_0(T)} \]

\[n_{ads} = \frac{N_{ads}}{M} \]

Reduced variables

Helium in confinement: the filling parameter - p.8/15
isotherms - information

\[p = \frac{p_{eq}}{p_0(T)} \]

\[n_{ads} = \frac{N_{ads}}{M} \]
Isotherms - information

\[p = \frac{P_{eq}}{P_0(T)} \]

\[n_{ads} = \frac{N_{ads}}{M} \]

Reduced variables

- Monolayer
- Multilayer
- Capillary condensation
isotherms - information

\[n_{\text{ads}} \text{ (mmol g}^{-1}) \]

\[p = \frac{P_{\text{eq}}}{P_0(T)} \]

\[n_{\text{ads}} = \frac{N_{\text{ads}}}{M} \]

- monolayer
- multilayer
- capillary condensation
- saturation

Helium in confinement: the filling parameter. – p.8/13
isotherms - information

- N_2 isotherms (standard)
- pore size distribution
- specific surface
N₂ isotherms (standard)
- pore size distribution
- specific surface

⁴He isotherms
- maximum helium intake
- wetting processes (capillary condensation)
isotherms - information

- N_2 isotherms (standard)
 - pore size distribution
 - specific surface

- 4He isotherms
 - maximum helium intake
 - wetting processes (capillary condensation)

⇒ choice of a good sample (MCM-41)
⇒ choice of filling state
neutrons - results (MIBEMOL)

![Graph showing the adsorption of helium at T=2.47 K.](image)

- The graph plots the adsorption of helium (n_{ads} in mmol g$^{-1}$) against the filling parameter (p).
- The data points indicate a sharp increase in adsorption near $p=1$.
neutrons - results (MIBEMOL)

\[n_{ads} \text{ (mmol g}^{-1}\text{)}]

- \(F_0 \) (void)
- \(F_1 \) (BET monolayer)
- \(F_2 \) (multilayer)
- \(F_3 \) (capillary condensation)
- \(F_4 \) (full)

Helium in confinement: the filling parameter – p.10/13
neutrons - results (MIBEMOL)

n_{ads} (mmol g$^{-1}$)

raw intensity (a.u.)

E(meV)
neutrons - results (MIBEMOL)

Graph showing the relationship between n_{ads} (mmol g$^{-1}$) and p with raw intensity (a.u.) versus E(meV) in the inset.
results (IN6)

- The graph shows the net intensity (a.u.) as a function of energy (E, meV) for different q values.
- The red line represents ripplons.
- The inset graph highlights the q=1.50 Å⁻¹ case, showing an increase in net intensity.
results (IN6)

\[q = 1.50 \, \text{Å}^{-1} \]

net intensity (a.u.)

E (meV)

Helium in confinement: the filling parameter – p.11/13
results (IN6)
results (IN6)
results (IN6)
results (IN6)

- Helium in confinement: the filling parameter.
results (IN6)
results (IN6)
results (IN6)
Summary and Conclusions

- Improvement in the sample characterization
 - N_2 isotherms (pore size distribution)
 - 4He isotherms (thermodynamic state of the sample)
Summary and Conclusions

- Improvement in the sample characterization
 - N_2 isotherms (pore size distribution)
 - ^4He isotherms (thermodynamic state of the sample)

Results

- 3D-like elementary excitations are supported by the capillary condensed liquid
- 2D surface capillary waves (ripplons) are supported by the liquid multilayer
- Excitation dispersion suggest that the density of capillary condensed liquid could drop 10% with respect to the bulk value