We report neutron-scattering measurements of the Bose-Einstein condensate (BEC) fraction, \(n_0 \), in solid helium that has a large surface to volume \((S/V)\) ratio. Rittner and Reppy observed large superfluid fractions, \(\rho_s/\rho \), in large \(S/V \) samples with \(\rho_s/\rho \) approximately proportional to \(S/V \), up to \(\rho_s/\rho = 20\% \) at \(S/V = 150 \text{ cm}^{-1} \). Our goal is to reveal whether there is BEC associated with these large \(\rho_s/\rho \). Our solid volume is 100 cm\(^3\) of commercial grade helium at 41 bars pressure \((T_c = 200 \text{ mK})\) in a cell that has \(S/V = 40 \text{ cm}^{-1} \) that cannot be quenched rapidly. We find no evidence for BEC or algebraic off diagonal long-range order with \(n_0 = 0.0 \pm 0.3\% \) at 65 mK.

In 2004, Kim and Chan\(^1,2\) reported that below a critical temperature \(T_c = 200 \text{ mK} \) a fraction of solid helium ceased to oscillate in torsional oscillator (TO) measurements. This nonclassical rotational inertia (NCRI) below \(T_c \) has been interpreted as a signature of supersolid behavior—remarkably extending superflow to solids.

An NCRI in TOs below \(T_c \) and its temperature dependence below \(T_c \) has since been confirmed in several laboratories\(^3-6\) and is now well established. However, the magnitude of the superfluid fraction, \(\rho_s/\rho \), reported varies dramatically, from 0.015\% to 20\%, depending on the experimental conditions such as how the solid is prepared and cooled, on subsequent annealing, on the sample geometry, on the \(^3\)He concentration, and on other factors.\(^7-9\) This suggests that the NCRI is associated with defects such as dislocations, grain boundaries, point defects, glassy regions, or surfaces. This association with defects is supported by Monte Carlo calculations, which find that in perfect crystals of solid helium both the \(\rho_s/\rho \) and the Bose-Einstein condensation (BEC) fraction, \(n_0 \), are unobservably small.\(^10-12\) However, observable values of \(\rho_s/\rho \) and condensate fractions \(n_0 \approx 0.3-0.5\% \) have been calculated for glassy (amorphous) solid helium\(^11\) and in solid helium containing vacancies.\(^13,14\) Amorphous regions in bulk solid helium\(^15\) and completely amorphous solid helium in porous media\(^16\) have now been observed. Particularly intriguing, Rittner and Reppy\(^17\) found large superfluid fractions in solid samples that have a large surface area to volume ratio \((S/V)\)—with \(\rho_s/\rho \) approximately proportional to \(S/V \) and reaching 20\% at \(S/V = 150 \text{ cm}^{-1} \). These large \(\rho_s/\rho \) values are not universally observed and may arise from rapid cooling of thin samples.\(^18\)

Surprisingly, the shear modulus (\(\mu \)) of solid helium shows\(^19\) an unexpected increase below \(T_c \). The increases in \(\mu \) and in \(\rho_s/\rho \) have the same dependence on temperature and \(^3\)He concentration suggesting a common physical origin. However, recent measurements\(^20\) show that \(\mu \) increases in hcp crystals only (both \(^4\)He and \(^3\)He) while an NCRI is observed in \(^4\)He only, both bcc and hcp. An unexplained contribution to the heat capacity\(^21,22\) that peaks at \(T_c \) and bulk mass flow in solids near the melting line\(^23,24\) has been reported. For reviews see Refs\(^14\) and\(^25-27\).

The observation of BEC below \(T_c \) would be an unambiguous verification that the observed NCRI indeed arises from superflow. In bulk three-dimensional (3D) systems, superflow is a consequence of BEC.\(^28\) In two-dimensional (2D) bulk systems, the onset of superflow\(^29\) is associated with the onset of order\(^30,31\) that can be observed\(^32\) in a similar way as BEC. In finite-sized systems superflow is also associated with BEC, and in all three cases there is a peaking of the atomic momentum distribution \(n(k) \) at \(k = 0 \) below \(T_c \). The goal of the present measurements is to search for BEC. We use a sample that has \(S/V = 40 \text{ cm}^{-1} \), where large values of \(\rho_s/\rho \) have been observed, and commercial grade helium \((\text{He concentration 0.3 ppm})\) where \(T_c = 200 \text{ mK} \). The cell volume is large, 100 cm\(^3\). While this improves the statistical precision by a factor of 5 beyond our previous measurements,\(^33\) it means we cannot cool the solid rapidly. We observe no changes in \(n(k) \) above and below \(T_c \) within precision. This may be expressed as a BEC fraction \(n_0 = 0.0 \pm 0.3\% \) at 65 mK. In commercial grade helium, the observed NCRI saturates to its maximum value at \(T = 50 \text{ mK} \). Thus we have not observed BEC and are not able to confirm that NCRI below \(T_c \) is superflow at this time.

The solid helium sample cell is shown in Fig. 1. The cell contained 95 parallel aluminum sheets of thickness 0.05 mm. There was a well-defined spacing \(d = 0.5 \text{ mm} \) filled with helium between each sheet so that \(S/V = 2/d = 40 \text{ cm}^{-1} \). The neutron beam entered the cell parallel to the aluminum sheets.

The solid was grown from liquid in the cell using the block capillary method. The capillary blocked at an initial pressure of 70 bars and the final pressure was 41 bars corresponding to complete solidification to an hcp solid at \(V_m = 19.8 \text{ cm}^3/mol \). Three hcp Bragg peaks were observed that confirmed this solid volume.

The neutron-scattering measurements were carried out on the MARI time of flight (TOF) spectrometer at the ISIS Facility, Rutherford Appleton Laboratory, U.K. The TOF data...
were converted to the dynamic structure factor \(J(Q,y) \) at constant wave-vector transfer \(Q \) in the range \(20 \leq Q \leq 29 \text{ Å}^{-1} \) and energy transfer \((\hbar \omega)\) expressed in the \(y \) variable, \(y = (\omega - \omega_0)/(\hbar Q/2m) \) where \(\omega_0 = (\hbar Q^2/2m) \).

To analyze the data, we introduce a model atomic momentum distribution,

\[
n(k) = n_0 \delta(k) + (1 - n_0)n^*(k),
\]

where \(n_0 \) is the condensed fraction and \(n^*(k) \) is the distribution over states above the condensate. Equation (1) assumes no coupling between the \(k=0 \) and \(k>0 \) states. The corresponding one body density matrix (OBDM), the Fourier transform of \(n(k) \), is

\[
n(r) = \int d^3k e^{\text{i}kr/\hbar} n(k) \delta(y - k_Q).
\]

The \(n(r) \) is denoted the longitudinal momentum distribution. The OBDM corresponding to \(n(r) \) is \(n(k) \) for atomic displacements \(s \) along \(Q \).

\[
J(I, y) = n(y) = \int d^3k n(k) \delta(y - k_Q).
\]

The \(n(y) \) is denoted the longitudinal momentum distribution. The OBDM corresponding to \(n(y) \) is \(n(r) \) for atomic displacements \(s \) along \(Q \).

A suitable model for \(n^*(s) \) is a Gaussian plus possible higher order corrections

\[
n^*(s) = \exp\left[-\frac{\bar{\alpha}_2 s^2}{2} + \frac{\bar{\alpha}_4 s^4}{4!} - \frac{\bar{\alpha}_6 s^6}{6!}\right],
\]

where the \(\bar{\alpha}_n \) are adjustable fitting parameters. The observed \(J(Q,y) \) can be expressed as a convolution of \(J(I, y) \) with the final state broadening function, \(R(Q,y) \). We use the \(R(Q,y) \) determined from measurements\(^{34} \) in liquid \(^4\)He as used previously in the solid.\(^{35} \)

The OBDM Eq. (3), the Fourier transform of \(J(I, y) = n(y) \), is our basic model function. For a 3D bulk system where there is BEC, \(n_0 \) is a constant. There is "off diagonal long range order" (ODLRO) of magnitude \(n_0 \). In 2D, although superfluidity is not a consequence of BEC,\(^{29} \) the onset of superfluidity is associated with the onset of algebraically decaying ODLRO.\(^{30,31} \) That is, below \(T_c \) \(n_0(s) \) is a slowly decaying function of \(s \) over \(s \approx 100 \text{ Å} \). In either case, we can observe this order since we observe \(n(s) \) out to lengths \(s \approx 6-7 \text{ Å} \), only at the present \(Q \) values investigated. An \(n_0 \) is observed as a peak in \(J(I, y) \) near \(y = 0 \) as in trapped BEC systems.

Figure 2 shows the observed \(J(Q,y) \) at \(Q = 26.5 \text{ Å}^{-1} \) and temperature 150 mK. The solid line is a fit of the model OBDM [Eq. (3)] with \(n_0 = 0 \). The \(\bar{\alpha}_2 \) and \(\bar{\alpha}_4 \) in \(n^*(s) \) are adjustable parameters. Only two parameters could be determined reliably in a fit so we neglected the higher order \(s^6 \) term. We actually choose \(\bar{\alpha}_6 \) to have a small positive value, \(\bar{\alpha}_6 = 0.02 \text{ Å}^{-6} \), to ensure convergence of \(n^*(s) \) at large \(s \). Values of \(\bar{\alpha}_6 \) up to 0.5 \(\text{ Å}^{-6} \) can be used without significantly affecting the fitted values of \(\bar{\alpha}_2 \) and \(\bar{\alpha}_4 \). Figure 2 also shows the best fit values of \(\bar{\alpha}_2 \) and \(\bar{\alpha}_4 \) obtained from similar fits at six \(Q \) values.

Clearly, the OBDM \(n^*(s) \) in Eq. (3) with \(n_0 = 0 \) provides a good fit to the data at 150 mK in Fig. 2. Indeed, we found excellent fits to the data with \(n_0 = 0 \) at all three temperatures, 500, 150, and 65 mK. The data showed little dependence on temperature. To illustrate this, Fig. 3 shows the observed \(J(Q,y) \) at 500, 150, and 65 mK at \(Q = 28.0 \text{ Å}^{-1} \). The solid line is a fit of \(n^*(s) \) with \(n_0 = 0 \) to the data at 500 mK. The same \(n^*(s) \) is simply superimposed on the data at 150 and 65 mK to show in a model independent way that the data at the
LIMITS ON BOSE-EINSTEIN CONDENSATION IN

At 500 mK, where \(T \approx T_c \) and we expect \(n_0 = 0 \), the present KE = 26.3 ± 0.1 K agrees well with previous high temperature values, for example, with KE = 26.0 ± 1.1 K observed at \(V_m = 20.01 \text{ cm}^3 / \text{mol} \) and \(T = 500 \text{ mK} \) and KE = 24.25 ± 0.30 K observed at \(V_m = 20.87 \text{ cm}^3 / \text{mol} \) and 1.6 K. We expect a somewhat larger KE in the present solid, which has a somewhat smaller volume (\(V_m = 19.8 \text{ cm}^3 / \text{mol} \)). The \(\bar{\alpha}_2 \) values are independent of temperature within precision. They give a kurtosis of \(n(x) \) of \(\delta = \overline{\alpha}_4 / \overline{\alpha}_2^2 \approx 0.3 \pm 0.1 \), which is again consistent with previous experiments (\(\delta = 0.4 \pm 0.1 \)).

To put bounds on \(n_0 \), we note again that at 500 mK, the observed \(n(k) \) is the momentum distribution for normal state vibration of the atoms about their lattice points. If superflow arises from BEC in surfaces or in glassy regions, we expect the \(n(k) \) of the majority of the atoms in the bulk of the lattice to be largely unaffected by the appearance of BEC. To estimate \(n_0 \) in this picture we hold \(n(x) \) fixed at its 500 mK value (i.e., \(\overline{\alpha}_2 \) and \(\overline{\alpha}_4 \) at their average values at 500 mK) and adjust \(n_0 \) to get a best fit at 150 and 65 mK. This yields the values of \(n_0 \) shown in Fig. 5. The average \(n_0 \) over six \(Q \) values is \(n_0 = 0.0 \pm 0.3 \% \) at 65 mK. Holding \(n(x) \) fixed overestimates \(n_0 \) in liquid \(^4\text{He} \).

Alternatively, we could assume that \(n(x) \) is affected by

\[Q = 28 \text{ Å}^{-1} \]

\[T = 500 \text{ mK} \]

\[T = 150 \text{ mK} \]

\[T = 65 \text{ mK} \]

FIG. 3. (Color online) Observed \(J(Q,y) \) at \(Q = 28.0 \text{ Å}^{-1} \) versus \(y \) at temperatures 500, 150, and 65 mK (circles). The solid line is a fit of the model OBDM with \(n_0 = 0 \) to the data at \(T = 500 \text{ mK} \). The fit at 500 mK is superimposed on the data at 150 and 65 mK to show that the data are similar at each temperature. The dashed line is the instrument resolution.

three temperatures are similar. At 150 and 65 mK, there is no need to include a condensate to fit the data well. There is no peaking of \(J(Q,y) \) at \(y = 0 \) or other change in shape of \(n(s) \) at 65 mK.

To quantify the temperature dependence, we note that the atomic kinetic energy (KE) is given by the width of the Gaussian component of \(n(x) \) as KE = (3/2)\(\overline{\alpha}_2 \) where \(\lambda = \hbar^2 / m = 1.0443 \text{ meV Å}^2 = 12.12 \text{ K Å}^2 \). With \(n_0 \) set to zero, values of \(\overline{\alpha}_2 \) at each temperature, averaged over \(Q \), were obtained from fits to data. The average value of \(\overline{\alpha}_2 \) at 150 mK is shown as a dashed line in Fig. 2. The KE at 500, 150, and 65 mK are shown in Fig. 4. The KE clearly changes little with temperature.

FIG. 4. The fitted parameter \(\overline{\alpha}_2 = (3/2) \overline{\alpha}_2 \) and the atomic kinetic energy, KE = (3/2)\(\overline{\alpha}_2 \) where \(\lambda = \hbar^2 / m = 1.0443 \text{ meV Å}^2 = 12.12 \text{ K Å}^2 \) versus temperature. The \(\overline{\alpha}_2 \) shown are the averages of \(\overline{\alpha}_2 \) over six \(Q \) values at each temperature.

Average \(\overline{\alpha}_2 \) values are independent of temperature within precision. They give a kurtosis of \(n(x) \) of \(\delta = \overline{\alpha}_4 / \overline{\alpha}_2^2 \approx 0.3 \pm 0.1 \), which is again consistent with previous experiments (\(\delta = 0.4 \pm 0.1 \)).

To put bounds on \(n_0 \), we note again that at 500 mK, the observed \(n(k) \) is the momentum distribution for normal state vibration of the atoms about their lattice points. If superflow arises from BEC in surfaces or in glassy regions, we expect the \(n(k) \) of the majority of the atoms in the bulk of the lattice to be largely unaffected by the appearance of BEC. To estimate \(n_0 \) in this picture we hold \(n(x) \) fixed at its 500 mK value (i.e., \(\overline{\alpha}_2 \) and \(\overline{\alpha}_4 \) at their average values at 500 mK) and adjust \(n_0 \) to get a best fit at 150 and 65 mK. This yields the values of \(n_0 \) shown in Fig. 5. The average \(n_0 \) over six \(Q \) values is \(n_0 = 0.0 \pm 0.3 \% \) at 65 mK. Holding \(n(x) \) fixed overestimates \(n_0 \) in liquid \(^4\text{He} \).

Alternatively, we could assume that \(n(x) \) is affected by

\[n_0 \]

\[\% \]

\[Q \text{ Å}^{-1} \]

Solid \(^4\text{He} \) T = 150 mK

\[n_0 \% \]

\[\% \]

\[Q \text{ Å}^{-1} \]

T = 65 mK

\[n_0 \% \]

\[\% \]

FIG. 5. (Color online) The condensate fraction \(n_0 \) versus \(Q \) at 150 and 65 mK obtained from fits to data with momentum distribution \(n(x) \) for \(k \) values above the condensate held at its 500 mK value. The mean \(n_0 \) is \(n_0 = 0.0 \pm 0.3 \% \).
the onset of BEC, e.g., that the width $\tilde{\alpha}_2$ as well as n_0 could change below T_c. In this case, we again find an average value of $n_0=0$ at $T=65$ mK and $T=150$ mK but with a marginally larger error bar reflecting the fact that two parameters are being adjusted (n_0 and $\tilde{\alpha}_2$).

Recently, Hunt et al.36 reported fascinating glassy behavior and significant relaxation times in the TO data of solid helium. The relaxation time to steady state is typically an hour at 50 mK. In the present experiment, neutrons were collected for 12 h at each temperature (24 h at 65 mK) and stored in 2 h batches. No change in the data with batch was detected indicating that neutron data from a solid in equilibrium was collected. Hunt et al.36 also found an NCRI that saturates to its maximum value of 4.8% for $S/V=200$ cm$^{-1}$ at 20 mK rather than at 50 mK.

In summary, our goal was to observe BEC in solid helium samples which have a large surface to volume (S/V) ratio. Large superfluid fractions have been reported in samples that have a large S/V, e.g., $\rho_2/\rho=20\%$ where $(S/V)=150$ cm$^{-1}$. Within precision, we observe no change in the shape of the atomic momentum distribution above and below $T_c=200$ mK in a sample for which $S/V=40$ cm$^{-1}$. This translates to a BE condensate fraction of zero within 0.3% at $T=65$ mK. This negative result suggests that either n_0 is small even where ρ_2/ρ is significant or the large ρ_2/ρ may be associated with rapid initial cooling rather than large S/V.18 Sample quenching and a lower temperature37 or increased precision may be required to observe BEC.

We thank Richard Down for valuable technical assistance at ISIS. This work was supported by the U.S. DOE, Office of Science (Grant No. DE-FG02-03ER46038).