Consider 3 variables \(x, y, z \). There is an "equation of state" \(f(x, y, z) = 0 \) relating these so that they are not independent. Then we introduce the function \(w(x, y, z) \) which depends on these - but only on 2 independently, i.e. we have \(x(y, z), y(x, z), z(x, y) \)

\[d\omega = \left(\frac{\partial w}{\partial x} \right)_z dy + \left(\frac{\partial w}{\partial y} \right)_z dz \]

(a) \(\omega = \omega(x, y) \)

\[d\omega = \left(\frac{\partial \omega}{\partial x} \right)_y dx + \left(\frac{\partial \omega}{\partial y} \right)_x dy \]

\[\Rightarrow \left(\frac{\partial \omega}{\partial x} \right)_y = \left(\frac{\partial \omega}{\partial y} \right)_x + \left(\frac{\partial \omega}{\partial x} \right)_y \frac{dx}{dy} \frac{dy}{dz} \]

(b) \(\frac{dx}{dy} \frac{dy}{dz} = \frac{\partial x}{\partial y} \frac{\partial y}{\partial z} + e = \frac{1}{\left(\frac{\partial y}{\partial x} \right)_y} \]

(c) \(z(x, y) \)

\[dz = \left(\frac{\partial z}{\partial x} \right)_y dx + \left(\frac{\partial z}{\partial y} \right)_x dy \]

\[\Rightarrow \frac{dy}{dx} = \left(\frac{\partial z}{\partial y} \right)_x + \left(\frac{\partial z}{\partial x} \right)_y \frac{dx}{dy} \]

\[dy = \left(\frac{\partial y}{\partial x} \right)_y dx + \left(\frac{\partial y}{\partial y} \right)_x dy \]

\[= \frac{1}{3} \left(\frac{\partial y}{\partial x} \right)_y \frac{dx}{dy} + \left(\frac{\partial y}{\partial y} \right)_x dy \]

The coeff \(\frac{\partial y}{\partial x} \frac{dx}{dy} = 0 \) because \(dy \) must = \(dx \)

\[\Rightarrow (\frac{\partial y}{\partial y})_x \frac{dx}{dy} = \frac{1}{(\frac{\partial y}{\partial x})_y} = \frac{1}{\frac{dy}{dz}} \]

and

\[\frac{\partial y}{\partial z} \frac{dx}{dy} \frac{dy}{dz} + (\frac{\partial y}{\partial z})_x \left(\frac{\partial z}{\partial y} \right)_y \frac{dy}{dz} = -1 \]

(d) \(\left(\frac{\partial x}{\partial y} \right)_z = \left(\frac{\partial x}{\partial w} \right)_z \left(\frac{\partial w}{\partial y} \right)_z - \left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial y} \right)_y \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial y} \right)_y \]

\[= \left(\frac{\partial x}{\partial w} \right)_z \frac{\partial w}{\partial y} - \left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial y} \right)_y \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial y} \right)_y \]

\[= \left(\frac{\partial x}{\partial w} \right)_z \frac{\partial w}{\partial y} - \left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial y} \right)_y \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial y} \right)_y \]
Definitions:

$$v = \left(\frac{B}{\rho} \right)^{1/2}$$ \hspace{1cm} B \text{ = Bulk modulus} \hspace{1cm} \rho = \frac{M}{V} \text{ = density}

B is either

$$B_s = -v \left(\frac{\partial P}{\partial V} \right)_s$$ \hspace{1cm} \text{constant entropy} \hspace{1cm} "\text{adiabatic}"

$$B_T = -v \left(\frac{\partial P}{\partial V} \right)_T$$ \hspace{1cm} \text{constant } T \hspace{1cm} "\text{isothermal}"

$$K_T = \frac{1}{B_T} = -\frac{1}{v} \left(\frac{\partial V}{\partial P} \right)_T$$ \hspace{1cm} \text{isothermal compressible}

$$K_s = \frac{1}{B_s} = -\frac{1}{v} \left(\frac{\partial V}{\partial P} \right)_s$$ \hspace{1cm} \text{adiabatic}"

$$v_s = \left(-\frac{1}{\rho} \left(\frac{\partial P}{\partial V} \right)_s \right)^{1/2}$$

If V constant:

$$\frac{\partial V}{\partial P} = -\frac{\partial P}{\partial V} \frac{\partial V}{\partial P} = -\frac{N m}{\gamma V} \frac{\partial P}{\partial V} = -\frac{P}{\gamma V} \frac{\partial P}{\partial V}$$

$$v_s = \left(\frac{\partial P}{\partial V} \right)_s$$ \hspace{1cm} $$v_s = \left(\frac{1}{K_s P} \right)^{1/2}$$

Want to show:

$$v_s = \left(\frac{c_P}{k_s c_v} \right)^{1/2} = \left(\frac{1}{k_s P} \right)^{1/2}$$

Basically, need to show that

$$K_s = \frac{c_v}{c_p} K_T$$

Have

$$K_s = -\frac{1}{v} \left(\frac{\partial V}{\partial P} \right)_s = -\frac{1}{v} \left(\frac{\partial S}{\partial P} \right)_V \frac{1}{v} \left(\frac{\partial V}{\partial S} \right)_P$$

$$\left(\frac{\partial S}{\partial P} \right)_V = \left(\frac{\partial S}{\partial T} \right)_V \left(\frac{\partial T}{\partial P} \right)_V = \frac{c_v}{\gamma} \left(\frac{\partial T}{\partial P} \right)_V$$

$$\left(\frac{\partial S}{\partial V} \right)_P = \frac{c_p}{\gamma} \left(\frac{\partial T}{\partial V} \right)_P$$
\[K_S = - \frac{1}{V} \frac{c_v}{c_p} \left(\frac{\partial T}{\partial p} \right)_V \frac{1}{(\frac{\partial T}{\partial V})_p} \]

Using \(\left(\frac{\partial p}{\partial V} \right)_T \), \(\left(\frac{\partial T}{\partial V} \right)_p = -1 \)

\[K_S = - \frac{1}{V} \left(\frac{c_v}{c_p} \right)_T = \frac{c_v}{c_p} \frac{c_p}{c_v} \frac{V^2}{mRT} \]

\[V_S = \left(\frac{RT}{m \frac{c_p}{c_v}} \right)^{\frac{1}{2}} = \left(\frac{1}{K_T \frac{c_p}{c_v}} \right)^{\frac{1}{2}} \]

\[P V = nRT \]

\[\frac{\partial p}{\partial V} = -nRT \frac{1}{V^2} \]

\[K_T = - \frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T \]

\[= + \frac{1}{V} \frac{V^2}{mRT} = \frac{V}{mRT} = \frac{m}{c_p} \]

\[V_S = \left(\frac{RT}{m \frac{c_p}{c_v}} \right)^{\frac{1}{2}} \]

\[dF = -SdT - pdV = -SdT - dW \]

\[F(T, V) = - \int_{V_0}^{V} \frac{T}{T_0} dT - \int_{V_0}^{V} \frac{V}{V_0} \]

\[= -RT \frac{V}{V_0} \left(\frac{T}{T_0} \right) - \int_{V_0}^{V} \frac{V}{V_0} \]

\[F(T, V) = -RT \frac{V}{V_0} \left(\frac{T}{T_0} \right) - \int_{V_0}^{V} \frac{V}{V_0} \]

\[P = -\frac{\partial F}{\partial V} \bigg|_{T} = -\frac{RT_0 V_0}{V^2 (c_{OH})} \left[\frac{T}{T_0} \right] - \int_{V_0}^{V} \frac{V}{V_0} \]

Work done

\[W = \int_{V_0}^{V} P dV \]

\[W = \frac{RT_0}{c_{OH}} \left[\frac{V_0}{V} - 1 \right] \left[\frac{V}{V_0} \right] - \int_{V_0}^{V} \frac{V}{V_0} \]

\[\text{Work done} \]

\[= \frac{RT_0}{c_{OH}} \left[\frac{V_0}{V} - 1 \right] \left[\frac{V}{V_0} \right] - \int_{V_0}^{V} \frac{V}{V_0} \]

\[= \frac{RT_0}{c_{OH}} \left[\frac{V_0}{V} - 1 \right] \left[\frac{V}{V_0} \right] + \int_{V_0}^{V} \frac{V}{V_0} \]
4. Show \(F = F(T, V, N) \), \(\Delta = \Delta(T, V, N) \)

Using the second law, \(Tds = du + pdV - u\,dn \), and the definition of \(F \), \(F = u - TS \), we have
\[
dF = du + ds = s\,dT \\
= du - (du + pdV - u\,dn) = s\,dT \\
= -pdV = s\,dT + u\,dn
\]

Thus, \(F = F(T, V, N) \).

From the definition, \(\Delta = F - u\,N \), we have
\[
d\Delta = dF - u\,dn = -u\,dn \\
= -pdV = s\,dT - u\,dn
\]

Thus, \(\Delta = \Delta(T, V, N) \).

5. (a) \(F = u - TS \)
\[
\frac{\partial}{\partial p} (pF) = F + p \frac{\partial F}{\partial p} = F + p \left(-kT \right) \frac{2F}{\partial V} \\
= F - T(\Delta) = F + TS = u
\]

(b) \(\frac{\partial}{\partial p} (p\Delta) = \Delta + p \frac{\partial \Delta}{\partial p} = \Delta + p \left(-kT \right) \frac{\partial \Delta}{\partial T} \)

From \(\partial^2 \epsilon / \partial T = -\Delta \), so that
\[
\frac{\partial p\Delta}{\partial p} = \Delta + TS = F - u\,N + TS = u - u\,N
\]

Using statistical mechanics, we have

(a) Canonical ensemble,
\[
U = \frac{1}{Z} \sum E_i e^{-pE_i S} \\
Z = \sum e^{-pE_i S} \\
\frac{\partial}{\partial p} (\log Z) = \frac{\partial}{\partial p} (pF)
\]

(b) Grand ensemble,
\[
U = \frac{1}{N} \sum E_i e^{-p(E_i - uN)}
\]
\[
Z = \frac{\sum e^{-B(\theta - \mu N)}}{n} \sum e^{-B(\theta - \mu N)}
\]

\[
-\frac{\partial}{\partial \theta} \log Z = \frac{1}{n} \sum e^{-B(\theta - \mu N)} Z(T, \theta, N, S)
\]

\[
= u - \frac{1}{n} \sum e^{-B(\theta - \mu N)} Z(T, \theta, N, S)
\]

\[
= u - \mu \bar{N}
\]

\[
u - \mu \bar{N} = -\frac{\partial}{\partial \theta} \log Z = \frac{3}{\partial \theta} (\theta^2)
\]
6. Clapeyron Equation

1. Start with a "Maxwell's Rule",
\[\frac{dF}{dV} = \left(\frac{\partial F}{\partial T} \right)_V dT + \left(\frac{\partial F}{\partial V} \right)_T dV = -SdT - p dV \]
\[\left(\frac{\partial F}{\partial T} \right)_V = -S \]
\[\left[\frac{\partial}{\partial V} \left(\frac{\partial F}{\partial T} \right)_V \right]_T = \left(\frac{\partial S}{\partial V} \right)_T \]
\[\left[\frac{\partial}{\partial T} \left(\frac{\partial F}{\partial V} \right)_T \right]_V = \left(\frac{\partial P}{\partial V} \right)_T \]
\[\left(\frac{\partial P}{\partial T} \right)_V = \left(\frac{\partial S}{\partial V} \right)_T \]

Integrating the \(\left(\frac{\partial P}{\partial T} \right)_V \) as change of \(P \) with \(T \) or
we move along a co-existence line between at vapor (\(V \)) and liquid (\(L \)) phase,
\[\left(\frac{\partial P}{\partial T} \right)_V = \frac{\Delta S}{\Delta V} = \frac{\Delta S}{\Delta V} \]
with \(\Delta S \) and \(\Delta V \) the change in entropy and volume between the two phases.
With \(\Delta Q = T \Delta S \) and \(\Delta Q = L \), the latent heat of vaporization, have
\[\left(\frac{\partial P}{\partial T} \right)_V = \frac{L}{T \Delta V} \quad \text{Clapeyron Equation} \]

2. Consider two points \(P \) and \(P' \)
at coordinates \(p, T \) and \(p', T' \) on the co-existence line between the \(L \) and \(V \) phases. The change in Gibbs free energy is
\[G(q + dp, T + dT) = G(q, T) + \left(\frac{\partial G}{\partial q} \right)_T dp + \left(\frac{\partial G}{\partial T} \right)_q dT \]
\[dq = v dp = s dT \]

We do this just inside each phase \(\Phi \) above and take the difference to obtain
\[d(\mathcal{G}_2 - \mathcal{G}_1) = (v_2 - v_1) dp - (s_2 - s_1) dT \]

where \(\mathcal{G} = G/V \) in the Gibbs free energy per particle (or per mole). Since \(s_2 - s_1 \) - the phases are in equilibrium - we have
\[\frac{dp}{dT} = \left(\frac{s_2 - s_1}{v_2 - v_1} \right) = \frac{\Delta s}{\Delta v} \]

where \(\Delta s \) and \(\Delta v \) are the entropy and volume changes across the phases.

With \(T \Delta s = \Delta \mathcal{G} = 1 \)

where \(h \) is the latent heat per mole
\[\left(\frac{dp}{dT} \right) = \frac{1}{T \Delta s} \]

This is the Clapeyron Eq. - sometimes called the Clausius-Clapeyron Eq.