Vibrational Eigenmodes: From Glasses to Fermi-Pasta-Ulam Problem

Branislav K. Nikolić
Department of Physics and Astronomy, University of Delaware, U.S.A.

PHYS 460/660: Computational Methods of Physics
Fig. 1.3. (a) Arrangement of atoms in liquid argon. (b) Probability \(p(r) \) for a liquid (dashed line) and for a gas (solid line). (c) Probability \(p(r) \) for a simple crystal.
Solid State: Crystals vs. Glasses

Temperature ranges for water

Crystalline SiO$_2$

“Glass” (window):

- stishovite
- coesite
- β-quartz
- α-quartz
- crystobalite
- tridymite
- liquid

O
Si

PHYS 460/660: Vibrational Eigenmodes: From Glasses to Fermi-Pasta-Ulam Problem
Amorphous Silicon: Topological Disorder
Density of States in a-Si

![Diagram of Density of States in a-Si](image)
The participation ratio essentially counts how many atoms in a given sample are vibrating for a given vibrational mode:

- **Extended modes** have $P=N$ (=number of atoms), so that $1/P$ is small ($1/N$).

- **Localized modes** can have P of order 1, and their $1/P$ can be therefore quite large (up to 1).

The mobility edge in amorphous silicon is 72 meV (the vertical line), as seen in the top figure--above the mobility edge P rapidly decreases!

At the lowest frequencies some of the modes are resonant (quasilocalized) and their P can be surprisingly small.
On the right is the same model but only the atoms that “participate” in the vibration of a given locon (frequency 77 meV) are shown. The normal mode is localized at the group of 6 atoms. Locons can be usually found at places of higher-than-average coordination.
Test Example: 4-atom Chain with Periodic B.C.

- **Four Newton's Second Law Equations cast in a Matrix Form:**

 \[
 \begin{align*}
 M \frac{d^2 u_j(t)}{dt^2} &= -k_j[u_j(t) - u_{j+1}(t)] - k_{j-1}[u_j(t) - u_{j-1}(t)] = -(k_{j-1}u_{j-1}(t) + (k_{j-1} + k_j)u_j(t) - k_ju_{j+1}(t)) \\
 \frac{d^2 |U\rangle}{dt^2} &= - \begin{pmatrix}
 K_4 + K_1 & -K_1 & 0 & -K_4 \\
 -K_1 & K_1 + K_2 & -K_2 & 0 \\
 0 & -K_2 & K_2 + K_3 & -K_3 \\
 -K_4 & 0 & -K_3 & K_3 + K_4
 \end{pmatrix} \cdot |U\rangle \\
 K_n &= \frac{k_n}{M}; \quad |U\rangle = \begin{pmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4
 \end{pmatrix}; \quad \langle U | K | U \rangle = \frac{2V}{M}
 \end{align*}
\]
Test Example: Normal Modes of 4-atom Ordered Chain

Ordered Chain: \(K_1 = K_2 = K_3 = K_4 \)

\[
|0\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix},
|1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix},
|2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix},
|3\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}
\]

\(\omega_0 = 0, \omega_1 = \sqrt{2}, \omega_2 = \sqrt{2}, \omega_3 = 2 \)

\[A_\mu |\mu\rangle \cos(\omega_\mu t + \phi_\mu) \]

\[
|U(t)\rangle = \sum_\mu \left[|\mu\rangle \langle \mu |U(0)\rangle \cos(\omega_\mu t) + |\mu\rangle \langle \mu |V(0)\rangle \frac{\sin(\omega_\mu t)}{\omega_\mu} \right]
\]

\[
|V(t)\rangle = \sum_\mu \left[|\mu\rangle \langle \mu |V(0)\rangle \cos(\omega_\mu t) - |\mu\rangle \langle \mu |U(0)\rangle \omega_\mu \sin(\omega_\mu t) \right]
\]
Test Example: Normal Modes in Pictures

\[|0\rangle (u_0 + v_0 t) \]

\[|1\rangle \]

\[|2\rangle \]

\[|3\rangle \]
Random Matrix Theory describes spectral properties (eigenenergies or eigenfrequencies) of:

- Quantum Chaos,
- Wave Chaos,
- Complex Many-Body Systems (QCD, nucleons).

Level Spacing Distribution (LSD) obeys Wigner-Dyson Statistics:

\[P_{WD}(s) = \frac{\pi s}{2} e^{-\frac{\pi s^2}{4}} \]
Fermi-Pasta-Ulam Problem (1955 MANIAC):
Nonlinear Springs → Chaos + Ergodicity?

![Schematic picture of the FPU model](image)

Figure 1: Schematic picture of the FPU model: masses that can move only in one dimension are coupled by nonlinear springs. u_n is the relative displacement with respect to the equilibrium position of the n-th mass. The two ends of the chain were assumed to be fixed, i.e., $u_0 = u_N = 0$.

\[
M \frac{d^2 u_j(t)}{dt^2} = K\left[u_j(t) + u_{j+1}(t) + u_{j-1}(t)\right] + \alpha \left[(u_{j+1}(t) - u_j(t))^2 - (u_j(t) - u_{j-1}(t))^2\right] + \beta \left[(u_{j+1}(t) - u_j(t))^3 - (u_j(t) - u_{j-1}(t))^3\right]
\]
Zabusky-Kruskal-Toda Lattice Soliton:

\[T \approx 0.76 \frac{N^{5/2}}{\sqrt{A\alpha}} \]

Figure 2: FPU recurrence for a FPU-\(\alpha \) model with \(N = 32 \) masses and fixed ends. The plot shows the time evolution of the energy (kinetic + potential) \(E_k = \frac{A_k^2 + \omega_k^2 A_k^2}{2} \) of each of the three lowest normal modes, related to the displacements through

\[A_k = \sqrt{\frac{2}{N+1}} \sum_{n=1}^{N} u_n \sin(nk\pi/(N+1)) \]

with the frequencies \(\omega_k^2 = 4\sin^2(k\pi/(2N+2)) \). Initially, only mode \(k = 1 \) (blue) is excited. After flowing to other modes, \(k = 2 \) (green), \(k = 3 \) (red), etc., the energy almost fully returns to mode \(k = 1 \); this was a surprise! This picture might be easily reproduced using the MATLAB code provided below.
How to Generate Ergodicity in FPU Part of Project 3

Periodic orbits, localization in normal mode space, and the Fermi–Pasta–Ulam problem

S. Flach
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden, Germany

M. V. Ivanchenko
Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom

O. I. Kanakov and K. G. Mishagin
Department of Radiophysics, Nizhny Novgorod University, Gagarin Avenue 23, 603950 Nizhny

Fig. 2. (a) Distributions of the mode energy densities for the FPU trajectory with $q_{c}=1$, $N=31$, $a=0.33$, and $E=0.32$. Circles: $t=10^4$, squares: $t=10^5$, diamonds: $t=10^6$. The dashed line is the q-breather from (b) for comparison. (b) Distributions of the mode energy densities for the q-breather with the same parameters as in (a) (see Ref. 12).

Fig. 5. Energy density distribution for the FPU trajectory (squares, $t=10^6$) and q-breather (circles) for $N=47$, $E=47$, and $q_{c}=47$. (a) $a=0.25$ and (b) $\beta=0.25$ (see Ref. 12).
Nonlinear Springs: Solve ODE via Numerical Methods

- Verlet method \(\rightarrow\) **Symmetric** (Forward and Backward) Propagation:

\[
x(t_n + \Delta t) = x(t_n) + \frac{dx}{dt} \Delta t + \frac{1}{2} \frac{d^2 x}{dt^2} (\Delta t)^2 + \frac{1}{6} \frac{d^3 x}{dt^3} (\Delta t)^3 + \ldots
\]

\[
x(t_n - \Delta t) = x(t_n) - \frac{dx}{dt} \Delta t + \frac{1}{2} \frac{d^2 x}{dt^2} (\Delta t)^2 - \frac{1}{6} \frac{d^3 x}{dt^3} (\Delta t)^3 + \ldots
\]

\[
x_{n+1} = 2x_n - x_{n-1} + \frac{d^2 x}{dt^2} (\Delta t)^2 + O([\Delta t]^4)
\]

\[
u_{n+1}(i) = 2u_n(i) - u_{n-1}(i) + \frac{1}{m} F_n (\Delta t)^2
\]

no self-start \(\Rightarrow u_2(i) = u_1(i) + v \Delta t\) (use e.g. Euler)