Visualizing the phonon wave function
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A phonon often is described as “a quantum of lattice vibration,” but this description can be difficult
to reconcile with the wave functions explored in a typical undergraduate quantum mechanics class.
A phonon wave function is similar to the harmonic oscillator wave functions studied in introductory
quantum mechanics, except that it is many-dimensional. We suggest a way to visualize the
probability density for this very high-dimensional wave function. The resulting pictures are
especially clear and intuitive for a coherent state, which is both a good approximation to a sound
wave and a discrete analog to laser light. These pictures can also provide a qualitative introduction
to quantum field theory. ©002 American Association of Physics Teachers.
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[. INTRODUCTION We first do a classical analysis. The system is shown in

) Fig. 1. Each mass is constrained to move vertically, and we
Phonons and quantum field theory are usually regarded agnsider only small oscillations so that this system is a

graduate topics but undergraduate students often are curioggypled pair of one-dimension&lD) harmonic oscillators.
about them. The goal of this article is to give a semi-grtical oscillations are chosen because they correspond di-
quantitative introduction to these topics at a level appropriatgactly to the axes of our plots. The position coordinates of the
for the final weeks of an introductory quantum mechanicsyasses are);, and q,. The momenta, which are directed

Sliarfsr.ws'ia(\)tngl]I\?val\?gitnitiL:)dnesn?ndarrﬁagorrlzf\?ertabzleGn \?rq:rodouncee-\ﬁertica”y along each coordinate, are denotepasind py,
to higher dimensional wave functions. This article takes thi espectively. The masses of the two particles are assumed to

background into account and presents a phonon or a quantu T'ﬂenli'caltm’ anfl the stp;]rllng cotnstantsda;re alzo |dtent(|jgal, it
field as simply another wave function, albeit a wave function € key 1o analyzing this system and {o understanding Its

of many coordinates instead of the usual one, two, or three. Rehavior is to use normal mode cqordinates, denoted by the
is challenging to visualize a function in more than three di-UPPer-case letter®, andQ,. For this system, they are

mensions, but we claim that some intuition can be gained by
looking at groups of one- and two-dimensional projections of  Q,=—(q,+q;), (18
such functions. A related series of pictures can be generated V2
by the software in Ref. 1.

Understanding Fig. 18 is the key to our visualization tech- Qy=—(0p—01) (1b)
nique. It shows a propagating coherent state of the phonon 2" 5 927 0)-
field. Most of this article up to this point describes the vari-
ous concepts and techniques used to generate this figurEhe momentum coordinates conjugateQe andQ, are Py
First, the analysis of a two-particle coupled harmonic oscil-and P,, and are related to the momenta of each mass by a
lator system is given using our visualization scheme, bottsimilar set of equations,
classically and quantum mechanically. This system is consid-
ered to establish our notation and to illustrate the idea of :i( +py) (2a)
using multiple projections of a function to visualize it. Then, Y P2 P,
an eight-particle lattice is analyzed in detail, emphasizing

some of the very interesting states of this system and culmi- 1
nating in Fig. 18. Some other interesting states of the eight- P2=‘7(p2— P1). (2b)
oscillator system are then discussed and a comparison is 2
made to a quantum field. In position coordinates the equations of motion are coupled
as indicated by a nondiagonal force matrix in the equation of

Il. A TWO-PARTICLE SYSTEM motion,

A system of two coupled harmonic oscillators makes an 2wlm = xlm {ql +m[§h =0. 3
excellent system for demonstrating many phonon concepts | —«/m 2x/m |02 SV

because this system can be thought of as a very sl |, 5 1ma) mode coordinates, however, the equations of mo-
particle Ia'gt[ce. In particular, it demonstrgtes normal rnOdetion are not coupled as indicated by the diagonal force ma-
decomposition and how the wave functions are separable,;,

coordinates. Best of all, the probability density of the entire x/m 0 |[Q Q;

wave function in position space can be fully visualized, so +m =0. (4)

the one-dimensional position or normal mode axes. An exThis is the reason for introducing and using normal mode
cellent treatment of this system is given in Sharfkar. coordinates—each of the normal modes can be treated as if it

and hence much simpler, when expressed in normal mode
arE > I 0 3«x/m C
that we can develop some intuition about projections onto o Q2 Q2
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Fig. 1. Atwo-particle system, showing the position coordinateandq, of
the two massegdots, which are constrained to move vertically, connected
by springs. 9192 9 Q1Q2
3 r r 3
Q. 1t 4
o |
(b) —f(—q,
were an independent, one-dimensional harmonic oscillator. T
Figure 2 shows three ways of plotting the configuration of ‘ *
this system at any time. The pair of one-dimensiapaind
g, axes on the left simply gives the location of each of the 919> 92 0,0,
masses(The horizontal line crossing both axes indicates the 2, - ,Q1
origin or equilibrium position. The two-dimensional plot in
the center specifies the location of both masses with a single © K 49,
point. The pair of plots on the right gives the projection onto |

each of the normal mode axes. These three views will be
used consistently to visualize the two-oscillator system INeig. 3. Plot of the system in each of its two eigenmot@sand (b). The

this SeCtion- ] ) amplitudes of the displacements are arbitrécyThe system with one mass
It is helpful to look at a few examples of configurations displaced but the other at its equilibrium position.

plotted on these axes, as given in Fig. 3. In Figp) 3for
example, the dot lies along th@; axis and the system is in
one of its two normal modes. The projections ogicandqs,
show that in this normal mode, both masses are displace}ﬁ
identically. The projections ont®; and Q, show that the

i%it-?j?r]rgnzril%!;(glg;m?cl)tmvsiﬁeols.c:H;trgsoTIOdaelbtr?e ;jhoégon th ors as indicated by the caret. For exampleis the operator
P y g 1. corresponding to the coordinatg .

axis about the origin and the masses will oscillate in unison The Hamiltonian, as written in position coordinates in Eq.

about the equilibrium positions. Figuréb shows the other : g .
normal mode, where the masses oscillate against each oth%@’ does not give a separable Scifier wave equation

P 2 -
Figure 3c) shows only mass 2 being displaced. The time ecac;J_se of thegq — Q)" term. However, in normal mode
evolution from this initial displacement will not be a simple coordinates,

herew?= k/m. To make the transition from the classical to
e quantum mechanical analysis of the same system, the
osition and momentum coordinates are changed to opera-

oscillation like a normal mode, but a more complex motion p2 p2 1 1
that is a superposition of the two normal modes. A==+ =2+ —ma’ Q2+ mwl Q2, @)
We next analyze this system quantum mechanically. We 2m 2m 2 2

seek state vectorig/(t)) that satisfy the Schringer equa- t doesgive a separable wave equation. Hepd= x/m and
tion w3=3«/m are the eigenvalues for normal mode coordinates
d . Q; andQ,, which are the eigenmodes of the system.
'ﬁﬁW(t)):HW(t))' ©) Because the wave equation separates in normal mode co-
. ordinates, these coordinates are the easiest to use. Solutions
whereH is the Hamiltonian operator. In position coordinates,to the Schrdinger equation for this system can be written as

the Hamiltonian is simple products of the familiar one-dimensional harmonic
2 p2 1 oscillator states. For example, the ground state of the system
~ 1 2 2, A A A i i
A= o Emwz[q§+q§+(q1—q2)z], (6) gthe product of ground state wave functions @y and for
2
#(Q1,Q2) = tho(Q1) ¥0(Q2)
mw, |4 mw1Q2
9,9 0,0 = —= - !
192 1¥2 ( - ) exp( o7
Mwp | ¥ Mw,Q5
N\ AT T
=(Q[0,0). )

Fig. 2. Three views of the two-dimensional space formed bgndq,. The  The last line uses Dirac notation. The state vector, or ket, is
center view shows the single point in this space which gives the locations ofyritten as|0 0), which is of the fornﬂ ny,n,), wheren, and

both masses. The position axgsandq, are shown as solid lines and the L . -
normal mode axe€); and Q, are shown as dashed lines. The left view Nz indicate the energy eigenstate of the wave function anng

shows its projection onto the, andq, axes, and the right view onto the Q1 andQ; reSpeCtiV9|¥- !—|e_ncdp,0> means thah, =0 and
normal mode axe®; andQ,. n,=0 and the system is in its ground state along both normal
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axes. This state vector exists in an infinite-dimensional Hil-
bert space and can be projected onto any set of basis vectors
that span the space, such as an energy basis, a coordinate
basis, or a momentum basis. One such set of coordinate basis  (a)
vectors corresponds to the infinite set of points on the
Q1—Q, plane and is represented by the shorthand notation
(Q|. The Hilbert space projectiofQ|0,0) gives the two-
dimensional wave functions(Q;,Q,). Note that all the 4145
other projections in this section are done in this 2D coordi-
nate space, not in the Hilbert space.

Note that the one-dimensional harmonic oscillator states (b)
do not lie along the position coordinateg and q,, but
along the normal mode coordinat€g andQ,. Thus, it is
easy to project the two-dimensional total probability density
onto the one-dimension&; andQ, axes,

P(Q1)=]#o(Qp)|> 9

It is not so easy, however, to project it onto thexes,

0,0,

:=:.§
’Q
[\ %]

©

P(Ql):f |4(Q1,Q2)|*dap,. (10
o 9,9,

Typically, this integration must be done numerically. For the
plots in this section, the numerical integration is done using
the standard trapezoid method. For the plots in Sec. lll, it is )
done using a Monte Carlo method.

As for any one-dimensional harmonic oscillator, we can
define raising and lowering operatofaiso called Crea.tlon Fig. 4. Probability densities of four states of the two-particle systen,
and annihilation operatorsEach normal mode coordinate 0.0, (0 [0,1), (©) |1,0, and(d) |1,1).
has one raising and one lowering operator,

A= T it (113
17N 24 1 2mwq i Y

— |

each state, the center, two-dimensional plot is the most com-

A — /Moy i [ 1 B 11 plete representation of the probability density function. It has
1 27 Quti 2mwq i Y (11b) the disadvantage, however, that such a plot cannot be made
for functions of higher than three dimensions. The other sets
~t Moy [ 1 of one-dimensional plots do not give as much information
Az= WQT' 2Mw,f P2, (110 and are probably not as easy to interpret, but they can be
easily adapted to visualizing higher-dimensional functions.
- mw, . [ 1 . This feature of the one-dimensional projections is the reason
Ag= WQPL' 2Mw,h Pa. (11d  we use them to visualize the many-dimensional phonon

. ) , wave function considered in Sec. Ill.
The action of these operators on a ket is to raise or lower one Tpe projections onto the position ax@se left-hand plots
of the n values, the energy eigenstate of the correspondingive the probabilities of finding masses 1 and 2 at various

mode, locations along the position coordinatgsandq,. The hori-
At N sy zontal width of these plots has no physical meaning and is
A1lny.nz) =y +1in;+1n;), (129 chosen to make the probability densities easy to see. The
Allnl,n2>= \/n_1|n1— 1n,), (12b projections onto _thg normal mode ax@s andQ, (the righp—_
A hand plot$ are similar except they usually lack the intuitive
A£|n1,n2>= Vn,+1|ng,n,+ 1), (120 explanation of thej, andq, projections. For this system, the
R Q1 projection gives the probability density for the center of
Aglng,nz)=1nglny,n,—1). (120 mass of the system becau®e=1A2(q;+0s); the Q, pro-

A few examples are&{|0,0}=|l,0}, AIAI 0,0=v22,0, jection gives the probability densit_y _for the relative coordi-
At3 B h - <t B nate 192(g;—0). In these plots, it is clear that the com-
(Al)A|O’O>_\/6|3’O>’ Ad4D=231), A;28=3]29, plete wave function is a product of functions along the

andA,|3,00=0. dashedQ; andQ, axes, not the solid;; andq, axes.

The quantum mechanical version of this system can be All the states shown in Fig. 4 are eigenfunctions of this
visualized using the same sets of coordinates as the classiclstem, so they do not vary with time. The superpositions of
version. Instead of plotting a single point on each plot, thethese states, however, will change with time.
probability density is plotted at each point using a gray scale. Figures 5 and 6 show the time evolution of a particularly
Figure 4 shows four examples. Figur@¥shows the ground interesting type of state for harmonic oscillator systems, a
state for the two-particle system as a whole, given explicitlycoherent stateThis state is a superposition of an infinite
by Eg. (8). Each of the other plots is an excited state. Fornumber of two-particle eigenfunctions

229 Am. J. Phys., Vol. 70, No. 3, March 2002 S. C. Johnson and T. D. Gutierrez 229



419, q,
A

’i ] 0, . i

‘\
(@) T~ 4,

I" \\\
’ ~

4,9, q,

A 4 Q2 N z ,Ql
\‘ l’

® *—

©

()

49,49, Q1Q2

Fig. 7. Probablilty density fofj;|0,0).

2\ @ n
w<Q1,Qz>=<Q|exp( - %) > —-(AD"00)

n=0

n=0

RR Lt
=exp — T \/ﬁwn(Ql) o(Q2),

(13

where ,(Qq) is the nth excited 1D harmonic oscillator
wave function, evaluated along coordinddg, and « is a
constant specifying the amplitude of oscillatidBee Ref. 3
for other excellent illustrations of this type of stat&hese
states feature a single peak that is a Gaussian along any
eigenmode axis and that stays Gaussian as it moves in an
elliptical orbit around the origin. They are often callelds-
sical statesdecause the center of the peak follows the trajec-
tory of a classical particle.

This particularly strong correspondence between the time

Fig. 5. Time evolution of a classical state of the two-particle system. In thisevolution of a quantum mechanical wave function and the
state, the two masses are oscillating in synchronization in one of their eigermotion of a classical particle makes coherent states particu-

modes.
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larly useful for demonstrating the transition from classical to
quantum mechanical models of systems. For example, Fig. 5
shows a state that corresponds to the classical oscillators os-
cillating in synchronization, like Fig. (@&). The g, and g,

plots show the particles oscillating in synch with each other
and theQ; and Q, plots show that only one eigenmode is
excited. Figure 6 shows an oscillation corresponding to the
other classical eigenmode where the two masses oscillate
against each other, like Fig(l3. Theq; andqg, plots again
show this behavior in an intuitive way.

Another interesting wave function is generated by the op-
eratorq,, which can be calculated from the coordinate trans-
forms of Eq.(1). The resulting stat§,|0,0) is shown in Fig.

7. This plot is similar to Fig. &), which shows the state

Q1]0,0. In particular, theg;—q, plots for§;|0,0) look like
the Q;—Q, plots for Q,/0,0). There is a significant differ-

ence between these states, however. Bec&Q$®,|0,0) is

an eigenfunction of the system, it is constant in time, but
(Qld4]0,0) is not an eigenfunction so it will change with
time. Most notably, the two-peak pattern in the-q, plots

is not constant.

The main point of this section is to demonstrate in a visual
way the requirements for plotting a system of two particles
moving in one dimension. It requires a two-dimensional
space to show the complete probability density, but some
insight can be gained from groups of 1D projections. The
two sets of axes that are most useful for projections are the
position coordinate axeq,; and g, and the normal mode
coordinate axe®; andQ,.

Ill. AN EIGHT-PARTICLE LATTICE

Fig. 6. Time evolution of a classical state of the two-particle system, shown . L . . .
at a different time scale than Fig. 5. In this eigenmode, the two masses 1he Visualization techniques introduced in Sec. Il can be

oscillate against each other.
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to mass 1 q,

0]1234567

Fig. 8. The eight-particle system of harmonic oscillators connected by

springs of spring constant All masses are constrained to move vertically Fig. 9. The coordinate axes used to plot the eight-particle lattice.
along the coordinateg,; throughqgg. Mass 8 is connected by a spring to

mass 1, as if the masses were arranged in a ring, giving periodic boundary

conditions.
and are collectively calle®, . The oscillation frequency for
each normal mode is given by
of a crystal(that is, phonons As with the two-particle os- wL=2 \ﬁsinz M (16)
cillator, we first consider the classical case. A system with K m-— 2 4’

eight oscillators is shown in Fig. 8. This system has periodic hich is the di . lati hi h
boundary conditions, which is a popular chdickfor dem- ~ WiEh 1S tl € |sperﬁ|on re at|ofn for this r?ystem. 'AI‘S for the

onsrating propagatng waves. The masses and the sprif PRI C2RE, he enson of e e o et o
constants are all identical. The position space coordinates a q P 9

g, throughgg and are collectively referred to gg where the ese coordinates.
1 8 i ifi
index x ranges from 1 through 8. The momenta of the The locations of all the masses,, can be specified by a

hich directed vertically al h axi single point in an eight-dimensional space. Because such a
masses, which are directed vertically along each axispare  gnace cannot be drawn clearly on a two-dimensional page,

throughpg or collectively p, with x ranging from 1 through e draw only the projections onto various axes in this space.
8. ) ) i i The axes that will be used in this section are shown in Fig. 9.
As with the two-particle problem, the key is to find the Tpe position axes), are on the left of each set of plots.

normal modes. The normal mode coorfdinates we will use argnhe eight dots give the positions of the eight masses. Rather
given by discrete cosine or sine transforms, than draw and label each of the eight position axgs,

8 4 throughgg, we draw a single vertical axis labeleg and
o . . . . . .
Q=2 —aqycos- kx (k=0,1,2,3,4, (149 label the horizontal axis the axis. The variable is a di-
x=1 \/5 4 mensionless index; the distance from the leftmost mass to
8 mass numbex is Xxo, whereo is the distance between each
-3 LosinTkx (k=-1,-2-3), 14y "
Qi= = \/gqx sing KX (k=-1-2-3), The normal mode axe®, are used in the center plot. As

with the g, axes, a single vertical axis label€y is drawn at
and are collectively referred to &3y. A positive k value k=0 and the horizontal axis is labeldd The use of the
indicates a “cosine mode” and a negatikevalue indicates a letter k intentionally suggests a momentum, howeveiis
“sine mode.” Modes with identicalk| are degenerate; they not the conjugate momentum. Like, k is a dimensionless
have identical energies and frequencies. For example, th@dex. The value ok is the wave number of the mode, which
cosine modeQ, is degenerate with the sine mo@ ;.  for this system is the number of complete wave cycles in the
These normal mode coordinates are similar to, but distincfattice. (See the momentum discussion below.
from, the more commonly used coordinates based on a dis- TheQ, _, plot shows the projection onto botk| =1 axes
crete Fourier transfornQF,szE: l(1/\/5) q.e ™. The simultaneously as a single point on a plane. The plot contains
Fourier modes are linear combinations of the modes we us@o new information; it is simply a different view of the two
Qr.1=(INM2)(Q1+iQ_;) and Qf _1=(1INM2)(Q;—iQ_1). axesQ; andQ_; which are already shown in th@, plot.
Conversely, our modes are linear combinations of the FourieHowever, it is useful because it shows more clearly the time
modes, Q;=1WM2(Qr;,+Qf_;) and Q_,;=iV2(Qr; behavior of these two degenerate modes.
_QF,fl)- Fourier transform modes are Comp|ex, which Figure 10 shows all eight normal modes for this system.
makes them easier to manipulate than the pair of sine angach eigenmode has a particularly simple projection on the
cosine modes, but also makes them more difficult to plotQk axes. Most of the normal modésxcept fork=0 andk
Because the goal of this article is to demonstrate phonor-4) are degenerate pairs, with identical resonant frequencies
modes graphically, we have chosen the pure real sine armehd identical wavelengths on the position axes. One mode of
cosine modes. each of these pairs corresponds to a sine function and the

The conjugate moment@ee the discussion on momenta other to a cosine function. Linear combinations of these

below) for these normal mode coordinates have nearly idenmode pairs can produce sinusoidal waves with varying phase

tical transforms, angles. Figure 11 shows such a wave propagating in time.
5 Note the time behavior of the projection on ti@,
™ plane—the projected point moves in a circle as the wave
Pk:gl ﬁpx cos, kx (k=0,1,2,34, (158 hropagates along the position axes.
This system has two different momentum concepts)-
8 4 - jugate momenturand wave numberwhich can be difficult
P.= > —p,sin—kx (k=-1,-2-3), (15p to grasp. The conjugate momentum is proportional to the
=148 4 time derivative of the coordinates. It is the familiar Newton-
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Fig. 11. Time evolution of the system showing a propagatkieg: 1 wave.

it is a quantity that is used in conservation laws for interac-
tions. The phonon momentum for this system is directed
horizontally along thex axis.

The following example qualitatively illustrates the nature
of phonon momentum. Consider a model for the absorption
of light by an ionic crystal. We neglect absorption by the
electrons and assume all the light is absorbed as the ions
vibrate in the electromagnetic field of the ligtwhich is a
good model for an ionic crystal absorbing infrared light
Absorption is proportional to the amplitude of vibration of
the ions, so light will be appreciably absorbed only when the
ions are vibrating near one of their resonant frequencies. For
a lattice, the resonant frequencies are the normal mode fre-
quencies of Eq(16) and each corresponds to a particular
normal mode with a particular wave number Light with
both the right frequency, and wave numbek will push all
the ions of the crystal in the right direction at the right time
Fig. 10. All eight normal modes of the eight-particle lattice, frem —3 in to increase the amplitude of a particular normal mode. Light
(@ to k=4 in (h), displayed using the coordinates used in Sec. lll. at a frequencyw,, but with a wave numbek” that does not

match the wave number of the normal mode will push dif-

ferent parts of the crystalut of phase with each othemd

will not increase the amplitude of the normal mode. Thus,
ian momentum of each of the masses in the chain. For thithe light must have the same frequency and wave number as
system, it is only directed vertically. Each of the eight indi- @ particular phonon mode to interact with it. So, how is the
vidual masses has a time-varying value for this momentumphonon momentum a conserved quantity? As the light is ab-
The other momentum concept, the wave numieis a bit ~ Sorbed, its amplitude at a particuladecreases and the am-
more subtle. It is also called thghonon momenturar the  plitude of the oscillation of the crystal at the sarkein-
crystal momenturand is not a physical momentuhinstead, creases. In this sense, the quantity “amplitudekatis
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conserved. Quantum mechanically, the amplitudes are quan-q, 0, s 0
tized and an interaction term in the Hamiltonian will be of L-1
the formB,A/, whereB, removes a photon of wave vector

k from the electromagnetic field and] adds a phonon of X k ¢

wave vectork to the crystal. This is part of the fascinating
topic of interacting quantum fields, which is beyond the
scope of this article. Fig. 12. Ground state of the quantum mechanical lattice. The apparent ab-
We next analyze this eight-particle system quantum mesence of @Q, projection is discussed in the text.
chanically. As with the two-particle system, we seek state
vectors|(t)) that satisfy the Schrbinger equation
the Q, axes are also Gaussian with varying widths. Higher

i% i| P(t))y=H]p(t)). (17) |k| values have narrower Gaussian profiles, corresponding to
dt the h_igher_ energie_:s and_ higher f_requencies of these modes, as
In position coordinates, the Hamiltonian is specified in the dispersion relation of E4.6).

The Qy mode in Fig. 12 appears to be missing because we

8 8

52
~ Px 1, N have chosen a delta functiof( Qg) = 8(Q,) for the Qg nor-
H _,(21 om & 2me (O 17007 (18 mal mode. Thus, the ground state wave function is
which again does not give a separable wave equation be- _
cause of the . ;—@,)? term. In normal mode coordinates (Qloy= S(Qo)kl;lo Yo(Qu), 23
. 4 |5§ 41 s where ,(Qy) is the 1D ground state harmonic oscillator
H:k;_3 ﬁﬂ(;s 2 M Qi (19 wave function for normal modk. Normal modeQ, repre-

. _ . ~sents the motion of the center of mass of the entire system.
which does give a separable wave function. The eightOur eight-particle system is not anchored to any fixed refer-
dimensional wave function can be written as a product of 1Dence system because of periodic boundary conditions, so the

harmonic oscillator wave functions, motion of its center of mass coordina is that of a free
4 particle in space. Because the probability density for a free
#(Q_3,Q_5,...00= 1] #(Qn particle is uniform over space, using the free particle wave
k=-3 function for ¢y(Qp) would produce a uniform probability

—(Q|N_3,N_5,N_1:Ng,N1,Np,N3,N5) density for allgy coordinates, which would not be useful for
—% =20 T T2 8T yisyalization. So, instead, we use the center of mass of the
(200 system as the origin for our coordinate system. This choice is
where eachy, can be any function of one variable. The equivalent to transforming into the center of mass reference
Dirac-style notation on the last line is defined similarly to T@Me. The result is a delta function for the probability den-
that of the two-particle system and is a particularly usefulSiy Of Qo- _ _
notation for the state of the system. The quantum mechanical AS for the two-particle system normal modes, or indeed
state of such a many-particle system is often calldebek a1 1D harmonic oscillator, we can define raising and low-

state ering operators _fo_r this system. Ea_ch normal mode coordi-
Projecting the eight-dimensional probability density func-nate has one raising and one lowering operator,
tion onto one of the normal modes is easy, Mo 1
Af= /X Qi p (24a
P(Qu)=|¢1(Qu)?, (21) k 2h <K 2moyh ¢

but it is not so easy to project it onto one of thg axes, R Moy . [1 .
Ak: WQK_*—I mekﬁ Pk' (24b)

P(q )=f dd, dds g dgs dog day daglpl?. (22) _ . .
! e 2 TS TR T o The action of these operators on a Fock space ket is to raise
The integration over a seven-dimensional subspace of th& lower one of then, values, the energy eigenstate of the
eight-dimensional function must be done numerically. WeCOrresponding mode. For example, the action of kkel

use a Monte Carlo method as folloVe generate a large raising operator is AI|n,3,n,z,n,l;no,nl,nz,n3,n4>
number (typically 1) of random points in the eight- =\n;+1|n_3,n_,,n_;;ng,n;+1,n,,n3,n,) and of thek
dimensionalQ, space with a distribution that matches the _ 1 |owering operator iSA-[n_« N >N+ Nn.N+ Ns.N
probability density in that space. This is done using the Me- g op 1In—5:n-2.0-13M0.N1. N2,
tropolis algorithnt Each of those points is transformeddgp
coordinates using the inverse transforms of Bd}). A his-

togram is constructed for eaafy and these histograms are %x % 3 Q1,-1

plotted on theg, vs x plots, with greater numbers of points B

corresponding to darker shades of gray. B . k . c
The ground state of the eight-particle quantum mechanical N

system is shown in Fig. 12 and is written as

|0,0,0; 0,0,0,0,9 or simply|0). The projections onto the,
axes are Gaussian and are all identical. The projections ontarig. 13. The quantum mechanical lattice with doe1 phonon,Al|0).

233 Am. J. Phys., Vol. 70, No. 3, March 2002 S. C. Johnson and T. D. Gutierrez 233



qx Qk S Ql-l qx Qk
#'l“l“»x QII'—IEII-k ~+-c .I“I"I»x QI;'—II!—k

Fig. 14. The quantum mechanical lattice with dee2 phonon,AJj0). Fig. 16. The quantum mechanical Iat}ice vyith fdur 1 phonons, three in
cosine modes and one in a sine mod&})é(AT ;)*|0).

n4>:m|n73,n72,n71;n0,n1_1,n2,n3,n4>. Note that the
action of thek=1 lowering operator is not the same as thatphonons as the one in Fig. 15, and because they afé|all

of the k=—1 raising operator, which iA";[n_3,n_,, =1 phonons, the total energy of both systems is identical.
N_1;Ng,N1,Ny,N3,N)=+n_1+1|n_3,n_,,n_;+1;ng,ny, Theq, projection still shows an expectation value of zero for
Ny ,N3,Ny). each mass.

The wordphononrefers to an increase in the excitation To get a nonzero position expectation value for any of the

number of the system. ThAI operators add one phonon Masses, a superposition of states is required. Figure 17 shows

- a superposition of the ground state and a one-phonon state.
each and thé\ operators remove one phonon each from arpe ‘propability densities of many of the masses are now

system. The ground state has zero phonons. Usin@\lan clearly centered above or below the equilibrium position,

operator on the ground state creates a one-phonon state. Aodicating a nonzero expectation value. Figure 17 shows the
example,Al]0,0,0; 0,0,0,0,=]0,0,0; 0,1,0,0.p is a sys- time evolution of this state by showing it at three separate
tem with onek=1 phonon. A more compact notation is times. The peak ofl, probabilities follows a cosine shape in

~t . . . space and oscillates in time like a vibrating string.
A4|0). This one-phonon state is shown in Fig. 13. In the "1 ime behavior of these states is calculated from the

normal mode space, we see that the probability alQads  Schralinger equation. Each 1D harmonic oscillator wave
that of a first excited harmonic oscillator and all the otherfynction is multiplied by a phase fact@“«, where w, is
normal modes are in their ground states. T@e_; axes  determined by the dispersion relation of Efj6). The norm
emphasize that the first excited state is along a cosine modgf the resulting wave function gives the probability density
On theqy position axes, we dootsee a cosine wave as we that is plotted.
might expect. The expectation value of the position for any At this point, we have introduced all the background
mass is still zero. However, the width of the probability dis- needed to understand the most important plot in this paper,
tribution now varies withx and this variation follows a co- Fig. 18. It is a coherent state similar to those introduced in
sine function. the discussion of the two-particle system. To get a coherent
Similar observations apply to Fig. 14, which shows thestate in any one mode, we would use an expression similar to

result of A}|0,0,0; 0,0,0,0,p=|0,0,0; 0,0,1,0,p or Aj|0).  Ea-(13),

This system has orle=2 phonon. ItQ, probability density e\ & o

is that of a first excited harmonic oscillator state. The width exp{ — T) 2 —Ie' ¢n(AE)”|0>, (25)
of its g, probability densities vary witk following a cosine n=o M

function, except that the wavelength of this cosine function

is shorter than for th&=1 phonon.

We can put several phonons into a system by using the q, 0, 5
raising operator several times. For example@{)(‘lO) 4 Qla-l
=10,0,0; 0,4,0,0,pis a system with fouk=1 phonons and | -
is shown in Fig. 15. Th&, plot shows that th&=1 normal (@) X k ——c
mode is in its fourth excited state and thg plot clearly
shows the cosine variation in the width of the probability
density of the masses. The amplitude of the width variation q 0
is greater with more phonons in the system. . k H Ql,—]

A system can also contain several phonons of arbitkary .
values. Figure 16 shows the system with thkeel phonons (b) X m[—m. Lo
and one&k= —1 phonon. This system has the same number of

qx Qk S Ql 1

% S Qg I 1 3
", , b, (C>L||Il||rx R B eiaieae S Aﬂ—'C

Fig. 17. Time sequence for the quantum mechanical lattice in a superposi-
Fig. 15. The quantum mechanical lattice with fdu# 1 phonons, A1)4/0). tion of states, the ground state and a one-phonon staf2}AJ|0) +|0)].
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(a)

mode state.

(b)
probability distribution is true for all states of this system,
and the coherent state simply makes the connection to the
classical system most vivid.
O, s Q In fact, the basic idea of replacing each classical value
‘ 1 with a probability distribution applies to armyuantum field

and we believe that this idea is a good way to introduce
quantum field theory. Figure 19 shows a coherent state for a
fifty-particle quantum mechanical lattice. Using fifty par-
ticles makes this system a good approximation to a continu-

Oy

Qk S 0 Fig. 19. A fifty-particle phonon system in a coherdnt —1 (sine-type
1,-1

!‘ |

©

) ous, scalar field in one dimension.
k g 0, The coherent propagating waves of Figs. 18 and 19 are
I ’ good approximations to several real-world quantum fields.
d | - For a Igttlce, these represent sound waves traveling through
@ " il“ k ¢ the lattice. In contrast, noncoherent sums of phonon states

the proper proportionscan represent thermal vibrations of
the lattice. Using the scalar field to represent one component
of an electromagnetic field, Figs. 18 and 19 are qualitatively
4 , correct representations of the coherent light of a laser. They
could also represent the electric waves broadcast by a radio
BEE R C antenna. In contrast, noncoherent sums of these electric field
| states can represent thermal radiation.
It is interesting to see a few other states of the eight-
. . . . e particle system. Figure 20 shows a noncoherent sum of sev-
Fig. 18. Time evolution of the quantum mechanical lattice in a coherent, . . -
propagatingk|=1 state. This is a good visualization of a sound wave in aeral |k| =1 states, each Wlt_h_ the_sa_me _energy. Without coher-
solid. ence, though, thq, probability distributions are all centered
on zero. This sum of states is a good analogy for monochro-
matic but noncoherent light.

Figure 21 shows a squeezed st@t&Squeezed states of
where ¢, =(n+3) o\t gives the time dependence. This statelight are similar to laser light and can be produced by various
would produce a coherent standing wave corresponding taonlinear optical techniques. A squeezed state is similar to a
modek. However, Fig. 18 is a propagating wave which re-coherent state, but the width of the Gaussian function plotted
quires a superposition of a cosine mode and a sine mode with theQ, _; plane varies with time. The squeezing is greatest
the right relative phase. Such a state is constructed by  in Fig. 21(c), where the width of the Gaussian is a minimum.

n A measurement of thék|=1 modes of the system at that
o . . . .
exp(—|a|2)2 —elon(AD)n E I¢m(AT )™ 0), time will have less uncertainty than a measurement on an
n=0 N! otherwise identical coherent state. This squeezing is balanced
(26) by the width of the Gaussian in Figs.@Land 21e), which
with ¢,=(n+ Yot and b= (m+ ) (w_,t— 7/2), show- is larger than for an otherwise identical coherent state. Thus,

ing that the sine modes are shifted byr/2 relative to the ;ii?u?:’izéd cs);?tti?)nag?ggnigetir?]yess:[e[:)nuttcc):ohrgvgnasall?evéetz ur?g\(/a.r_
cosine modes(With no shift, the result would be another y P ’ P y

. . : : ing a higher uncertainty at other times. This reduction in
standing wave).Flgure 18 shows the time evolution of such uncertainty can be used to improve the sensitivity of some
a|k|=1 propagating coherent state.

types of measurements, for example, a gravitational wave
The gy projection is the most pedagogically useful. If we jatectort!

compare Fig. 18 with the classical propagating wave in Fig.

11, we see that the pictures look qualitatively similar with a

sinusoidal wave propagating to the righth the quantum q 0 5

case, however, the locations of each mass are not certain, but 4 k Ql,—l
are given by a probability distribution that is centered on the
classical location We claim that Fig. 18 is an intuitive and
correct picture of a propagating phonon. It is important to
note that this picture is of a rather special, coherent state
instead of a single phonon. Still, the idea of replacing the
definite classical values of the positions of each mass with &ig. 20. A noncoherent superposition of sevékil=1 four-phonon states.

()

|
|
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. |
(a) = —-.—»c ” 8 k c
"
S Q1 ] Fig. 23. A local excitation ak=3 from thed} field operatorg?}|0).
(b) k —L'C particle system, this is done by using tfieoperator, which
is often called dield operator Like §, for the two-particle

system, this operator can be expressed in terms of the normal
mode operators using the inverse of the discrete sine and
-1 cosine transforms of Edq14),

4 -1
r

c 4= > i@ cose kxt S i@ sin— kx. (27
qx_k:o\/§ K*Pa g K 4T

(©

Figure 23 shows the stafg|0) which puts such a localized
s 0 excitation at locatiorx= 3. Theq, plot of this system is quite
1,1 similar to theQ, plot of Fig. 13. In both plots, most of the
» coordinates have ground state probability densities and just
c one coordinate has a first excited state probability density.
However, theQ, plot shows an eigenfunction so it will be
stationary in time, whereas tlig plot shows a superposition
so it will vary in time. In particular, the, plot's appearance

2 Q1,-1 is short-lived and quickly decays to be barely distinguishable
from the ground state.
k c The word “particle” has a different meaning in quantum

(d)

©)
field theory than it does in many other contexts. Usually,
particle refers to an object localized in space. However, a
phonon is usually called a particle, and it is distributed over
the entire lattice. The same observation can be made, for
example, for a photoifan excitation of the electromagnetic
field) or for an electron(an excitation of its associated field,

discrets. Fourior transform normal mode coordinates, drec =" Caled the Dirac fiek The local exciatiort|0) de-
' scribed above is not a phonon; it is in fact a linear combina-

cus_sed after Eqd4). This state is a complex "”e"?“ combi- tion of many phonon states. In some contexts, this local ex-
nation of thek=1 andk= —1 normal mode coordinates. It .. .. :
: citation is called a particle.
has the advantage that this one-phonon state represents a
traveling wave. States with positiketravel in one direction
and negativek travel in the other direction. However, a plot IV. CONCLUSION
reveals why we chose not to use these coordinates—they are z one-dimensional lattice ofl coupled harmonic oscilla-

featureless on a probability density plot. If phase were plot- rs is a good demonstration system for phonons and| as
ted on these plots, such as by using a color code, a point 6? 9 ! Y3 P
—oo, for quantum fields. Classically, this system demon-

constant phase on 1., plot would travel in a circle at strates the normal mode decomposition needed to solve such
ggquency wi. (For bea_lutlful pictures of one- and_ two- many-particle or field theory problems and also shows the
imensional wave functions showing phase information, seg f dk. th h h
Ref. 12) wo types of momentunp, andk, that such systems have.
It is possible, and often useful, to define an operator tha@uantum m_echan_|cally, th_e wave function is a complex func-
creates a localized excitation of the lattider phonong or ~ ton of N dimensions which cannot be plotted fbr>3.
the field (for photons and electrons and siicFor our eight-  However, the probability density is a positive, real number at
each point in thisN-dimensional space and can be projected
onto groups of coordinate axes such asdheosition axes
0, 5 and Q, normal mode axes. The resulting probability density
Ql,—l plots present a somewhat intuitive picture of the phonon
wave function, or of the wave function of any quantum field.
What they show for a particular state of the system, the co-
herent state, is that displacement of each classical mass is
replaced by a probability density centered on the classical
location. Thus, just like the location of a single particle is
Fig. 22. A one-phonon state using one alternate normal mode coordinatélurred in quantum mechanics, the location of every particle
[Al+iAT 7]0). in a lattice, or every value of a field, is blurred in quantum

Q9 Q9 Q Q Q
j '>< z '>< ; '>< E '>< E’x
E = J
[ I
1 ]
o o o o o
I
Q = 0 =, Q = Q0 Q
- =~ - =~ =~ - =~ - =
‘ [
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Fig. 21. Time development of a squeezed state.
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field theory. We hope that these pictures can serve as afiPresent address: Intel Corporation, 5200 NE Elam Young Parkway, Mail

enticing introduction to the fascinating but difficult subject
of quantum field theory.

V. PROBLEMS

(1) Find the time dependence of the positions of the two,

classical masses for each configuration in Fig. 3. Qse
andQ,; or g;; andqy; as the coordinates at time= 0. First
use theQ coordinates and then transform to thecoordi-
nates.

(2) Write explicit expressions for the four wave functions
shown in Fig. 4.

(3) Show thatQﬂO) is an eigenstate of the two-particle
system, but thafj;|0) is not. Hint: findQ, and§; in terms
of A; andA! using Egs(11) and(1) and show that operating

on|0) with Q, gives a single particle state, but tfétgives
a superposition of states.
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