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A phonon often is described as ‘‘a quantum of lattice vibration,’’ but this description can be difficult
to reconcile with the wave functions explored in a typical undergraduate quantum mechanics class.
A phonon wave function is similar to the harmonic oscillator wave functions studied in introductory
quantum mechanics, except that it is many-dimensional. We suggest a way to visualize the
probability density for this very high-dimensional wave function. The resulting pictures are
especially clear and intuitive for a coherent state, which is both a good approximation to a sound
wave and a discrete analog to laser light. These pictures can also provide a qualitative introduction
to quantum field theory. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

Phonons and quantum field theory are usually regarde
graduate topics but undergraduate students often are cu
about them. The goal of this article is to give a sem
quantitative introduction to these topics at a level appropr
for the final weeks of an introductory quantum mechan
class. At this level, students are comfortable with on
dimensional wave functions and may have been introdu
to higher dimensional wave functions. This article takes t
background into account and presents a phonon or a qua
field as simply another wave function, albeit a wave funct
of many coordinates instead of the usual one, two, or thre
is challenging to visualize a function in more than three
mensions, but we claim that some intuition can be gained
looking at groups of one- and two-dimensional projections
such functions. A related series of pictures can be gener
by the software in Ref. 1.

Understanding Fig. 18 is the key to our visualization tec
nique. It shows a propagating coherent state of the pho
field. Most of this article up to this point describes the va
ous concepts and techniques used to generate this fig
First, the analysis of a two-particle coupled harmonic os
lator system is given using our visualization scheme, b
classically and quantum mechanically. This system is con
ered to establish our notation and to illustrate the idea
using multiple projections of a function to visualize it. The
an eight-particle lattice is analyzed in detail, emphasiz
some of the very interesting states of this system and cu
nating in Fig. 18. Some other interesting states of the eig
oscillator system are then discussed and a compariso
made to a quantum field.

II. A TWO-PARTICLE SYSTEM

A system of two coupled harmonic oscillators makes
excellent system for demonstrating many phonon conc
because this system can be thought of as a very small~two-
particle! lattice. In particular, it demonstrates normal mo
decomposition and how the wave functions are separa
and hence much simpler, when expressed in normal m
coordinates. Best of all, the probability density of the ent
wave function in position space can be fully visualized,
that we can develop some intuition about projections o
the one-dimensional position or normal mode axes. An
cellent treatment of this system is given in Shankar.2
227 Am. J. Phys.70 ~3!, March 2002 http://ojps.aip.org/a
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We first do a classical analysis. The system is shown
Fig. 1. Each mass is constrained to move vertically, and
consider only small oscillations so that this system is
coupled pair of one-dimensional~1D! harmonic oscillators.
Vertical oscillations are chosen because they correspond
rectly to the axes of our plots. The position coordinates of
masses areq1 and q2 . The momenta, which are directe
vertically along each coordinate, are denoted asp1 and p2 ,
respectively. The masses of the two particles are assume
be identical,m, and the spring constants are also identicalk.

The key to analyzing this system and to understanding
behavior is to use normal mode coordinates, denoted by
upper-case lettersQ1 andQ2 . For this system, they are

Q15
1

&
~q21q1!, ~1a!

Q25
1

&
~q22q1!. ~1b!

The momentum coordinates conjugate toQ1 andQ2 areP1

and P2 , and are related to the momenta of each mass b
similar set of equations,

P15
1

&
~p21p1!, ~2a!

P25
1

&
~p22p1!. ~2b!

In position coordinates the equations of motion are coup
as indicated by a nondiagonal force matrix in the equation
motion,

F 2k/m 2k/m

2k/m 2k/m G Fq1

q2
G1mF q̈1

q̈2
G50. ~3!

In normal mode coordinates, however, the equations of m
tion are not coupled as indicated by the diagonal force m
trix,

Fk/m 0

0 3k/mG FQ1

Q2
G1mF Q̈1

Q̈2
G50. ~4!

This is the reason for introducing and using normal mo
coordinates—each of the normal modes can be treated as
227jp/ © 2002 American Association of Physics Teachers
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were an independent, one-dimensional harmonic oscillat
Figure 2 shows three ways of plotting the configuration

this system at any time. The pair of one-dimensionalq1 and
q2 axes on the left simply gives the location of each of t
masses.~The horizontal line crossing both axes indicates
origin or equilibrium position.! The two-dimensional plot in
the center specifies the location of both masses with a si
point. The pair of plots on the right gives the projection on
each of the normal mode axes. These three views will
used consistently to visualize the two-oscillator system
this section.

It is helpful to look at a few examples of configuration
plotted on these axes, as given in Fig. 3. In Fig. 3~a!, for
example, the dot lies along theQ1 axis and the system is in
one of its two normal modes. The projections ontoq1 andq2
show that in this normal mode, both masses are displa
identically. The projections ontoQ1 and Q2 show that the
system is only in normal mode 1. In this mode, the dot on
two-dimensional~2D! plot will oscillate only along theQ1
axis about the origin and the masses will oscillate in unis
about the equilibrium positions. Figure 3~b! shows the other
normal mode, where the masses oscillate against each o
Figure 3~c! shows only mass 2 being displaced. The tim
evolution from this initial displacement will not be a simp
oscillation like a normal mode, but a more complex moti
that is a superposition of the two normal modes.

We next analyze this system quantum mechanically.
seek state vectorsuc(t)& that satisfy the Schro¨dinger equa-
tion

i\
d

dt
uc~ t !&5Ĥuc~ t !&, ~5!

whereĤ is the Hamiltonian operator. In position coordinate
the Hamiltonian is

Ĥ5
p̂1

2

2m
1

p̂2
2

2m
1

1

2
mv2@ q̂1

21q̂2
21~ q̂12q̂2!2#, ~6!

Fig. 1. A two-particle system, showing the position coordinatesq1 andq2 of
the two masses~dots!, which are constrained to move vertically, connect
by springs.

Fig. 2. Three views of the two-dimensional space formed byq1 andq2 . The
center view shows the single point in this space which gives the location
both masses. The position axesq1 andq2 are shown as solid lines and th
normal mode axesQ1 and Q2 are shown as dashed lines. The left vie
shows its projection onto theq1 and q2 axes, and the right view onto th
normal mode axesQ1 andQ2 .
228 Am. J. Phys., Vol. 70, No. 3, March 2002
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wherev25k/m. To make the transition from the classical
the quantum mechanical analysis of the same system,
position and momentum coordinates are changed to op
tors as indicated by the caret. For example,q̂1 is the operator
corresponding to the coordinateq1 .

The Hamiltonian, as written in position coordinates in E
~6!, does not give a separable Schro¨dinger wave equation
because of the (q̂12q̂2)2 term. However, in normal mode
coordinates,

Ĥ5
P̂1

2

2m
1

P̂2
2

2m
1

1

2
mv1

2 Q̂1
21

1

2
mv2

2 Q̂2
2 , ~7!

it doesgive a separable wave equation. Here,v1
25k/m and

v2
253k/m are the eigenvalues for normal mode coordina

Q1 andQ2 , which are the eigenmodes of the system.
Because the wave equation separates in normal mode

ordinates, these coordinates are the easiest to use. Solu
to the Schro¨dinger equation for this system can be written
simple products of the familiar one-dimensional harmo
oscillator states. For example, the ground state of the sys
is the product of ground state wave functions forQ1 and for
Q2 ,

c~Q1 ,Q2!5c0~Q1!c0~Q2!

5S mv1

p\ D 1/4

expS 2
mv1Q1

2

2\ D
3S mv2

p\ D 1/4

expS 2
mv2Q2

2

2\ D
5^Qu0,0&. ~8!

The last line uses Dirac notation. The state vector, or ke
written asu0,0&, which is of the formun1 ,n2&, wheren1 and
n2 indicate the energy eigenstate of the wave function alo
Q1 andQ2 respectively. Hence,u0,0& means thatn150 and
n250 and the system is in its ground state along both nor

Fig. 3. Plot of the system in each of its two eigenmodes~a! and ~b!. The
amplitudes of the displacements are arbitrary.~c! The system with one mass
displaced but the other at its equilibrium position.

of
228S. C. Johnson and T. D. Gutierrez
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axes. This state vector exists in an infinite-dimensional H
bert space and can be projected onto any set of basis ve
that span the space, such as an energy basis, a coord
basis, or a momentum basis. One such set of coordinate
vectors corresponds to the infinite set of points on
Q1–Q2 plane and is represented by the shorthand nota
^Qu. The Hilbert space projection̂Qu0,0& gives the two-
dimensional wave functionc(Q1 ,Q2). Note that all the
other projections in this section are done in this 2D coor
nate space, not in the Hilbert space.

Note that the one-dimensional harmonic oscillator sta
do not lie along the position coordinatesq1 and q2 , but
along the normal mode coordinatesQ1 and Q2 . Thus, it is
easy to project the two-dimensional total probability dens
onto the one-dimensionalQ1 andQ2 axes,

P~Q1!5uc0~Q1!u2. ~9!

It is not so easy, however, to project it onto theq axes,

P~q1!5E
2`

`

uc~Q1 ,Q2!u2 dq2 . ~10!

Typically, this integration must be done numerically. For t
plots in this section, the numerical integration is done us
the standard trapezoid method. For the plots in Sec. III,
done using a Monte Carlo method.

As for any one-dimensional harmonic oscillator, we c
define raising and lowering operators~also called creation
and annihilation operators!. Each normal mode coordinat
has one raising and one lowering operator,

Â1
†5Amv1

2\
Q̂12 iA 1

2mv1\
P̂1 , ~11a!

Â15Amv1

2\
Q̂11 iA 1

2mv1\
P̂1 , ~11b!

Â2
†5Amv2

2\
Q̂22 iA 1

2mv2\
P̂2 , ~11c!

Â25Amv2

2\
Q̂21 iA 1

2mv2\
P̂2 . ~11d!

The action of these operators on a ket is to raise or lower
of the n values, the energy eigenstate of the correspond
mode,

Â1
†un1 ,n2&5An111un111,n2&, ~12a!

Â1un1 ,n2&5An1un121,n2&, ~12b!

Â2
†un1 ,n2&5An211un1 ,n211&, ~12c!

Â2un1 ,n2&5An2un1 ,n221&. ~12d!

A few examples areÂ1
†u0,0&5u1,0&, Â1

†Â1
†u0,0&5&u2,0&,

(Â1
†)3u0,0&5A6u3,0&, Â1u4,1&52u3,1&, Â2

†u2,8&53u2,9&,

and Â2u3,0&50.
The quantum mechanical version of this system can

visualized using the same sets of coordinates as the clas
version. Instead of plotting a single point on each plot,
probability density is plotted at each point using a gray sc
Figure 4 shows four examples. Figure 4~a! shows the ground
state for the two-particle system as a whole, given explic
by Eq. ~8!. Each of the other plots is an excited state. F
229 Am. J. Phys., Vol. 70, No. 3, March 2002
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each state, the center, two-dimensional plot is the most c
plete representation of the probability density function. It h
the disadvantage, however, that such a plot cannot be m
for functions of higher than three dimensions. The other s
of one-dimensional plots do not give as much informati
and are probably not as easy to interpret, but they can
easily adapted to visualizing higher-dimensional functio
This feature of the one-dimensional projections is the rea
we use them to visualize the many-dimensional phon
wave function considered in Sec. III.

The projections onto the position axes~the left-hand plots!
give the probabilities of finding masses 1 and 2 at vario
locations along the position coordinatesq1 andq2 . The hori-
zontal width of these plots has no physical meaning and
chosen to make the probability densities easy to see.
projections onto the normal mode axesQ1 andQ2 ~the right-
hand plots! are similar except they usually lack the intuitiv
explanation of theq1 andq2 projections. For this system, th
Q1 projection gives the probability density for the center
mass of the system becauseQ151/&(q11q2); the Q2 pro-
jection gives the probability density for the relative coord
nate 1/&(q12q2). In these plots, it is clear that the com
plete wave function is a product of functions along t
dashedQ1 andQ2 axes, not the solidq1 andq2 axes.

All the states shown in Fig. 4 are eigenfunctions of th
system, so they do not vary with time. The superpositions
these states, however, will change with time.

Figures 5 and 6 show the time evolution of a particula
interesting type of state for harmonic oscillator systems
coherent state. This state is a superposition of an infini
number of two-particle eigenfunctions

Fig. 4. Probability densities of four states of the two-particle system,~a!
u0,0&, ~b! u0,1&, ~c! u1,0&, and~d! u1,1&.
229S. C. Johnson and T. D. Gutierrez
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Fig. 5. Time evolution of a classical state of the two-particle system. In
state, the two masses are oscillating in synchronization in one of their ei
modes.

Fig. 6. Time evolution of a classical state of the two-particle system, sh
at a different time scale than Fig. 5. In this eigenmode, the two ma
oscillate against each other.
230 Am. J. Phys., Vol. 70, No. 3, March 2002
c~Q1 ,Q2!5^QuexpS 2
uau2

2 D (
n50

`
an

n!
~Â1

†!nu0,0&

5expS 2
uau2

2 D (
n50

`
an

An!
cn~Q1!c0~Q2!,

~13!

where cn(Q1) is the nth excited 1D harmonic oscillato
wave function, evaluated along coordinateQ1 , and a is a
constant specifying the amplitude of oscillation.~See Ref. 3
for other excellent illustrations of this type of state.! These
states feature a single peak that is a Gaussian along
eigenmode axis and that stays Gaussian as it moves i
elliptical orbit around the origin. They are often calledclas-
sical statesbecause the center of the peak follows the traj
tory of a classical particle.

This particularly strong correspondence between the t
evolution of a quantum mechanical wave function and
motion of a classical particle makes coherent states part
larly useful for demonstrating the transition from classical
quantum mechanical models of systems. For example, Fi
shows a state that corresponds to the classical oscillators
cillating in synchronization, like Fig. 3~a!. The q1 and q2
plots show the particles oscillating in synch with each oth
and theQ1 and Q2 plots show that only one eigenmode
excited. Figure 6 shows an oscillation corresponding to
other classical eigenmode where the two masses osci
against each other, like Fig. 3~b!. Theq1 andq2 plots again
show this behavior in an intuitive way.

Another interesting wave function is generated by the
eratorq̂1 , which can be calculated from the coordinate tran
forms of Eq.~1!. The resulting stateq̂1u0,0& is shown in Fig.
7. This plot is similar to Fig. 4~c!, which shows the state
Q̂1u0,0&. In particular, theq1–q2 plots for q̂1u0,0& look like

the Q1–Q2 plots for Q̂1u0,0&. There is a significant differ-

ence between these states, however. Because^QuQ̂1u0,0& is
an eigenfunction of the system, it is constant in time, b
^Quq̂1u0,0& is not an eigenfunction so it will change wit
time. Most notably, the two-peak pattern in theq1–q2 plots
is not constant.

The main point of this section is to demonstrate in a vis
way the requirements for plotting a system of two partic
moving in one dimension. It requires a two-dimension
space to show the complete probability density, but so
insight can be gained from groups of 1D projections. T
two sets of axes that are most useful for projections are
position coordinate axesq1 and q2 and the normal mode
coordinate axesQ1 andQ2 .

III. AN EIGHT-PARTICLE LATTICE

The visualization techniques introduced in Sec. II can
extended to higher dimensions to show the lattice vibrati

s
n-

n
es

Fig. 7. Probablilty density forq̂1
†u0,0&.
230S. C. Johnson and T. D. Gutierrez
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of a crystal~that is, phonons!. As with the two-particle os-
cillator, we first consider the classical case. A system w
eight oscillators is shown in Fig. 8. This system has perio
boundary conditions, which is a popular choice4–6 for dem-
onstrating propagating waves. The masses and the sp
constants are all identical. The position space coordinates
q1 throughq8 and are collectively referred to asqx where the
index x ranges from 1 through 8. The momenta of t
masses, which are directed vertically along each axis, arp1

throughp8 or collectivelypx with x ranging from 1 through
8.

As with the two-particle problem, the key is to find th
normal modes. The normal mode coordinates we will use
given by discrete cosine or sine transforms,

Qk5 (
x51

8
1

A8
qx cos

p

4
kx ~k50,1,2,3,4!, ~14a!

Qk52 (
x51

8
1

A8
qx sin

p

4
kx ~k521,22,23!, ~14b!

and are collectively referred to asQk . A positive k value
indicates a ‘‘cosine mode’’ and a negativek value indicates a
‘‘sine mode.’’ Modes with identicaluku are degenerate; the
have identical energies and frequencies. For example,
cosine modeQ1 is degenerate with the sine modeQ21 .
These normal mode coordinates are similar to, but dist
from, the more commonly used coordinates based on a
crete Fourier transformQF,k5(x51

8 (1/A8) qxe
ip/4kx. The

Fourier modes are linear combinations of the modes we
QF,15(1/&)(Q11 iQ21) and QF,215(1/&)(Q12 iQ21).
Conversely, our modes are linear combinations of the Fou
modes, Q151/&(QF,11QF,21) and Q215 i/&(QF,1

2QF,21). Fourier transform modes are complex, whi
makes them easier to manipulate than the pair of sine
cosine modes, but also makes them more difficult to p
Because the goal of this article is to demonstrate pho
modes graphically, we have chosen the pure real sine
cosine modes.

The conjugate momenta~see the discussion on momen
below! for these normal mode coordinates have nearly id
tical transforms,

Pk5 (
x51

8
1

A8
px cos

p

4
kx ~k50,1,2,3,4!, ~15a!

Pk5 (
x51

8
1

A8
px sin

p

4
kx ~k521,22,23!, ~15b!

Fig. 8. The eight-particle system of harmonic oscillators connected
springs of spring constantk. All masses are constrained to move vertica
along the coordinatesq1 throughq8 . Mass 8 is connected by a spring t
mass 1, as if the masses were arranged in a ring, giving periodic boun
conditions.
231 Am. J. Phys., Vol. 70, No. 3, March 2002
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and are collectively calledPk . The oscillation frequency for
each normal mode is given by

vk52Ak

m
sin

p

2

uku
4

, ~16!

which is the dispersion relation for this system. As for t
two-particle case, the reason for using the normal mode
ordinates is that the equations of motion are decoupled u
these coordinates.

The locations of all the masses,qx , can be specified by a
single point in an eight-dimensional space. Because suc
space cannot be drawn clearly on a two-dimensional pa
we draw only the projections onto various axes in this spa
The axes that will be used in this section are shown in Fig

The position axesqx are on the left of each set of plots
The eight dots give the positions of the eight masses. Ra
than draw and label each of the eight position axes,q1

throughq8 , we draw a single vertical axis labeledqx and
label the horizontal axis thex axis. The variablex is a di-
mensionless index; the distance from the leftmost mas
mass numberx is xs, wheres is the distance between eac
mass.

The normal mode axesQk are used in the center plot. A
with theqx axes, a single vertical axis labeledQk is drawn at
k50 and the horizontal axis is labeledk. The use of the
letter k intentionally suggests a momentum, however,k is
not the conjugate momentum. Likex, k is a dimensionless
index. The value ofk is the wave number of the mode, whic
for this system is the number of complete wave cycles in
lattice. ~See the momentum discussion below.!

TheQ1,21 plot shows the projection onto bothuku51 axes
simultaneously as a single point on a plane. The plot conta
no new information; it is simply a different view of the tw
axesQ1 and Q21 which are already shown in theQk plot.
However, it is useful because it shows more clearly the ti
behavior of these two degenerate modes.

Figure 10 shows all eight normal modes for this syste
Each eigenmode has a particularly simple projection on
Qk axes. Most of the normal modes~except fork50 andk
54! are degenerate pairs, with identical resonant frequen
and identical wavelengths on the position axes. One mod
each of these pairs corresponds to a sine function and
other to a cosine function. Linear combinations of the
mode pairs can produce sinusoidal waves with varying ph
angles. Figure 11 shows such a wave propagating in ti
Note the time behavior of the projection on theQ1,21
plane—the projected point moves in a circle as the wa
propagates along the position axes.

This system has two different momentum concepts,con-
jugate momentumand wave number, which can be difficult
to grasp.7 The conjugate momentum is proportional to t
time derivative of the coordinates. It is the familiar Newto

y

ry

Fig. 9. The coordinate axes used to plot the eight-particle lattice.
231S. C. Johnson and T. D. Gutierrez
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ian momentum of each of the masses in the chain. For
system, it is only directed vertically. Each of the eight ind
vidual masses has a time-varying value for this moment
The other momentum concept, the wave numberk, is a bit
more subtle. It is also called thephonon momentumor the
crystal momentumand is not a physical momentum.4 Instead,

Fig. 10. All eight normal modes of the eight-particle lattice, fromk523 in
~a! to k54 in ~h!, displayed using the coordinates used in Sec. III.
232 Am. J. Phys., Vol. 70, No. 3, March 2002
is

.

it is a quantity that is used in conservation laws for intera
tions. The phonon momentum for this system is direc
horizontally along thex axis.

The following example qualitatively illustrates the natu
of phonon momentum. Consider a model for the absorpt
of light by an ionic crystal. We neglect absorption by th
electrons and assume all the light is absorbed as the
vibrate in the electromagnetic field of the light~which is a
good model for an ionic crystal absorbing infrared ligh!.
Absorption is proportional to the amplitude of vibration
the ions, so light will be appreciably absorbed only when
ions are vibrating near one of their resonant frequencies.
a lattice, the resonant frequencies are the normal mode
quencies of Eq.~16! and each corresponds to a particu
normal mode with a particular wave numberk. Light with
both the right frequencyvk and wave numberk will push all
the ions of the crystal in the right direction at the right tim
to increase the amplitude of a particular normal mode. Li
at a frequencyvk8 but with a wave numberk9 that does not
match the wave number of the normal mode will push d
ferent parts of the crystalout of phase with each otherand
will not increase the amplitude of the normal mode. Th
the light must have the same frequency and wave numbe
a particular phonon mode to interact with it. So, how is t
phonon momentum a conserved quantity? As the light is
sorbed, its amplitude at a particulark decreases and the am
plitude of the oscillation of the crystal at the samek in-
creases. In this sense, the quantity ‘‘amplitude atk’’ is

Fig. 11. Time evolution of the system showing a propagatinguku51 wave.
232S. C. Johnson and T. D. Gutierrez
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conserved. Quantum mechanically, the amplitudes are q
tized and an interaction term in the Hamiltonian will be
the form B̂kÂk

† , whereB̂k removes a photon of wave vecto

k from the electromagnetic field andÂk
† adds a phonon o

wave vectork to the crystal. This is part of the fascinatin
topic of interacting quantum fields, which is beyond t
scope of this article.

We next analyze this eight-particle system quantum m
chanically. As with the two-particle system, we seek st
vectorsuc(t)& that satisfy the Schro¨dinger equation

i\
d

dt
uc~ t !&5Ĥuc~ t !&. ~17!

In position coordinates, the Hamiltonian is

Ĥ5 (
x51

8 p̂x
2

2m
1 (

x51

8
1

2
mv2~ q̂x112q̂x!

2, ~18!

which again does not give a separable wave equation
cause of the (q̂x112q̂x)

2 term. In normal mode coordinate

Ĥ5 (
k523

4 P̂k
2

2m
1 (

k523

4
1

2
mvk

2Q̂k
2, ~19!

which does give a separable wave function. The eig
dimensional wave function can be written as a product of
harmonic oscillator wave functions,

c~Q23 ,Q22 ,...,Q4!5 )
k523

4

ck~Qk!

5^Qun23 ,n22 ,n21 ;n0 ,n1 ,n2 ,n3 ,n4&,

~20!

where eachck can be any function of one variable. Th
Dirac-style notation on the last line is defined similarly
that of the two-particle system and is a particularly use
notation for the state of the system. The quantum mechan
state of such a many-particle system is often called aFock
state.

Projecting the eight-dimensional probability density fun
tion onto one of the normal modes is easy,

P~Q1!5uc1~Q1!u2, ~21!

but it is not so easy to project it onto one of theqx axes,

P~q1!5E
2`

`

dq2 dq3 dq4 dq5 dq6 dq7 dq8ucu2. ~22!

The integration over a seven-dimensional subspace of
eight-dimensional function must be done numerically. W
use a Monte Carlo method as follows.8 We generate a large
number ~typically 105! of random points in the eight
dimensionalQk space with a distribution that matches t
probability density in that space. This is done using the M
tropolis algorithm.9 Each of those points is transformed toqx
coordinates using the inverse transforms of Eq.~14!. A his-
togram is constructed for eachqx and these histograms ar
plotted on theqx vs x plots, with greater numbers of point
corresponding to darker shades of gray.

The ground state of the eight-particle quantum mechan
system is shown in Fig. 12 and is written a
u0,0,0; 0,0,0,0,0& or simply u0&. The projections onto theqx
axes are Gaussian and are all identical. The projections
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the Qk axes are also Gaussian with varying widths. High
uku values have narrower Gaussian profiles, correspondin
the higher energies and higher frequencies of these mode
specified in the dispersion relation of Eq.~16!.

TheQ0 mode in Fig. 12 appears to be missing because
have chosen a delta functionc(Q0)5d(Q0) for theQ0 nor-
mal mode. Thus, the ground state wave function is

^Qu0&5d~Q0!)
kÞ0

c0~Qk!, ~23!

where c0(Qk) is the 1D ground state harmonic oscillat
wave function for normal modek. Normal modeQ0 repre-
sents the motion of the center of mass of the entire syst
Our eight-particle system is not anchored to any fixed re
ence system because of periodic boundary conditions, so
motion of its center of mass coordinateQ0 is that of a free
particle in space. Because the probability density for a f
particle is uniform over space, using the free particle wa
function for c0(Q0) would produce a uniform probability
density for allqx coordinates, which would not be useful fo
visualization. So, instead, we use the center of mass of
system as the origin for our coordinate system. This choic
equivalent to transforming into the center of mass refere
frame. The result is a delta function for the probability de
sity of Q0 .

As for the two-particle system normal modes, or inde
any 1D harmonic oscillator, we can define raising and lo
ering operators for this system. Each normal mode coo
nate has one raising and one lowering operator,

Âk
†5Amvk

2\
Q̂k2 iA 1

2mvk\
P̂k , ~24a!

Âk5Amvk

2\
Q̂k1 iA 1

2mvk\
P̂k . ~24b!

The action of these operators on a Fock space ket is to r
or lower one of thenk values, the energy eigenstate of th
corresponding mode. For example, the action of thek51

raising operator is Â1
†un23 ,n22 ,n21 ;n0 ,n1 ,n2 ,n3 ,n4&

5An111un23 ,n22 ,n21 ;n0 ,n111,n2 ,n3 ,n4& and of thek

51 lowering operator isÂ1un23 ,n22 ,n21 ;n0 ,n1 ,n2 ,n3 ,

Fig. 13. The quantum mechanical lattice with onek51 phonon,Â1
†u0&.

Fig. 12. Ground state of the quantum mechanical lattice. The apparen
sence of aQ0 projection is discussed in the text.
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n4&5An1un23 ,n22 ,n21 ;n0 ,n121,n2 ,n3 ,n4&. Note that the
action of thek51 lowering operator is not the same as th

of the k521 raising operator, which isÂ21
† un23 ,n22 ,

n21 ;n0 ,n1 ,n2 ,n3 ,n4&5An2111un23 ,n22 ,n2111;n0 ,n1 ,
n2 ,n3 ,n4&.

The wordphononrefers to an increase in the excitatio
number of the system. TheÂk

† operators add one phono

each and theÂk operators remove one phonon each from

system. The ground state has zero phonons. Using anÂk
†

operator on the ground state creates a one-phonon state
example, Â1

†u0,0,0; 0,0,0,0,0&5u0,0,0; 0,1,0,0,0& is a sys-
tem with onek51 phonon. A more compact notation

Â1
†u0&. This one-phonon state is shown in Fig. 13. In t

normal mode space, we see that the probability alongQ1 is
that of a first excited harmonic oscillator and all the oth
normal modes are in their ground states. TheQ1,21 axes
emphasize that the first excited state is along a cosine m
On theqx position axes, we donot see a cosine wave as w
might expect. The expectation value of the position for a
mass is still zero. However, the width of the probability d
tribution now varies withx and this variation follows a co
sine function.

Similar observations apply to Fig. 14, which shows t
result of Â2

†u0,0,0; 0,0,0,0,0&5u0,0,0; 0,0,1,0,0& or Â2
†u0&.

This system has onek52 phonon. ItsQ2 probability density
is that of a first excited harmonic oscillator state. The wid
of its qx probability densities vary withx following a cosine
function, except that the wavelength of this cosine funct
is shorter than for thek51 phonon.

We can put several phonons into a system by using
raising operator several times. For example, (Â1

†)4u0&
5u0,0,0; 0,4,0,0,0& is a system with fourk51 phonons and
is shown in Fig. 15. TheQk plot shows that thek51 normal
mode is in its fourth excited state and theqx plot clearly
shows the cosine variation in the width of the probabil
density of the masses. The amplitude of the width variat
is greater with more phonons in the system.

A system can also contain several phonons of arbitrark
values. Figure 16 shows the system with threek51 phonons
and onek521 phonon. This system has the same numbe

Fig. 14. The quantum mechanical lattice with onek52 phonon,Â2
†u0&.

Fig. 15. The quantum mechanical lattice with fourk51 phonons, (Â1
†)4u0&.
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phonons as the one in Fig. 15, and because they are auku
51 phonons, the total energy of both systems is identi
Theqx projection still shows an expectation value of zero f
each mass.

To get a nonzero position expectation value for any of
masses, a superposition of states is required. Figure 17 sh
a superposition of the ground state and a one-phonon s
The probability densities of many of the masses are n
clearly centered above or below the equilibrium positio
indicating a nonzero expectation value. Figure 17 shows
time evolution of this state by showing it at three separ
times. The peak ofqx probabilities follows a cosine shape i
space and oscillates in time like a vibrating string.

The time behavior of these states is calculated from
Schrödinger equation. Each 1D harmonic oscillator wa
function is multiplied by a phase factoreivkt, wherevk is
determined by the dispersion relation of Eq.~16!. The norm
of the resulting wave function gives the probability dens
that is plotted.

At this point, we have introduced all the backgroun
needed to understand the most important plot in this pa
Fig. 18. It is a coherent state similar to those introduced
the discussion of the two-particle system. To get a cohe
state in any one mode, we would use an expression simila
Eq. ~13!,

expS 2
uau2

2 D (
n50

`
an

n!
eifn~Âk

†!nu0&, ~25!

Fig. 16. The quantum mechanical lattice with fourk51 phonons, three in

cosine modes and one in a sine mode, (Â1
†)3(Â21

† )1u0&.

Fig. 17. Time sequence for the quantum mechanical lattice in a superp

tion of states, the ground state and a one-phonon state, 1/&@Â1
†u0&1u0&].
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wherefn5(n1 1
2)vkt gives the time dependence. This sta

would produce a coherent standing wave correspondin
modek. However, Fig. 18 is a propagating wave which r
quires a superposition of a cosine mode and a sine mode
the right relative phase. Such a state is constructed by

exp~2uau2! (
n50

`
an

n!
eifn~Â1

†!n (
m50

`
am

m!
eifm~Â21

† !mu0&,

~26!

with fn5(n1 1
2)v1t and fm5(m1 1

2)(v21t2 p/2), show-
ing that the sine modes are shifted by2p/2 relative to the
cosine modes.~With no shift, the result would be anothe
standing wave.! Figure 18 shows the time evolution of suc
a uku51 propagating coherent state.

The qx projection is the most pedagogically useful. If w
compare Fig. 18 with the classical propagating wave in F
11, we see that the pictures look qualitatively similar with
sinusoidal wave propagating to the right.In the quantum
case, however, the locations of each mass are not certain
are given by a probability distribution that is centered on t
classical location. We claim that Fig. 18 is an intuitive an
correct picture of a propagating phonon. It is important
note that this picture is of a rather special, coherent s
instead of a single phonon. Still, the idea of replacing
definite classical values of the positions of each mass wi

Fig. 18. Time evolution of the quantum mechanical lattice in a coher
propagatinguku51 state. This is a good visualization of a sound wave in
solid.
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probability distribution is true for all states of this system
and the coherent state simply makes the connection to
classical system most vivid.

In fact, the basic idea of replacing each classical va
with a probability distribution applies to anyquantum field,
and we believe that this idea is a good way to introdu
quantum field theory. Figure 19 shows a coherent state f
fifty-particle quantum mechanical lattice. Using fifty pa
ticles makes this system a good approximation to a cont
ous, scalar field in one dimension.

The coherent propagating waves of Figs. 18 and 19
good approximations to several real-world quantum fiel
For a lattice, these represent sound waves traveling thro
the lattice. In contrast, noncoherent sums of phonon state~in
the proper proportions! can represent thermal vibrations o
the lattice. Using the scalar field to represent one compon
of an electromagnetic field, Figs. 18 and 19 are qualitativ
correct representations of the coherent light of a laser. T
could also represent the electric waves broadcast by a r
antenna. In contrast, noncoherent sums of these electric
states can represent thermal radiation.

It is interesting to see a few other states of the eig
particle system. Figure 20 shows a noncoherent sum of
eral uku51 states, each with the same energy. Without coh
ence, though, theqx probability distributions are all centere
on zero. This sum of states is a good analogy for monoch
matic but noncoherent light.

Figure 21 shows a squeezed state.10 Squeezed states o
light are similar to laser light and can be produced by vario
nonlinear optical techniques. A squeezed state is similar
coherent state, but the width of the Gaussian function plo
in theQ1,21 plane varies with time. The squeezing is great
in Fig. 21~c!, where the width of the Gaussian is a minimum
A measurement of theuku51 modes of the system at tha
time will have less uncertainty than a measurement on
otherwise identical coherent state. This squeezing is balan
by the width of the Gaussian in Figs. 21~a! and 21~e!, which
is larger than for an otherwise identical coherent state. Th
a squeezed state allows the system to have a lower un
tainty in its position at some times, but compensates by h
ing a higher uncertainty at other times. This reduction
uncertainty can be used to improve the sensitivity of so
types of measurements, for example, a gravitational w
detector.11

t,

Fig. 19. A fifty-particle phonon system in a coherentk521 ~sine-type
mode! state.

Fig. 20. A noncoherent superposition of severaluku51 four-phonon states.
235S. C. Johnson and T. D. Gutierrez
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Figure 22 shows a one-phonon state in one of the alter
discrete Fourier transform normal mode coordinates,
cussed after Eq.~14!. This state is a complex linear comb
nation of thek51 andk521 normal mode coordinates.
has the advantage that this one-phonon state represe
traveling wave. States with positivek travel in one direction
and negativek travel in the other direction. However, a plo
reveals why we chose not to use these coordinates—the
featureless on a probability density plot. If phase were p
ted on these plots, such as by using a color code, a poin
constant phase on theQ61 plot would travel in a circle at
frequency vk . ~For beautiful pictures of one- and two
dimensional wave functions showing phase information,
Ref. 12.!

It is possible, and often useful, to define an operator t
creates a localized excitation of the lattice~for phonons! or
the field~for photons and electrons and such!. For our eight-

Fig. 21. Time development of a squeezed state.

Fig. 22. A one-phonon state using one alternate normal mode coordi

@Â1
†1 iÂ21

† #u0&.
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particle system, this is done by using theq̂x operator, which
is often called afield operator. Like q̂1 for the two-particle
system, this operator can be expressed in terms of the no
mode operators using the inverse of the discrete sine
cosine transforms of Eq.~14!,

q̂x5 (
k50

4
1

A8
Q̂k cos

p

4
kx1 (

k523

21
1

A8
Q̂k sin

p

4
kx. ~27!

Figure 23 shows the stateq̂3
†u0& which puts such a localized

excitation at locationx53. Theqx plot of this system is quite
similar to theQk plot of Fig. 13. In both plots, most of the
coordinates have ground state probability densities and
one coordinate has a first excited state probability dens
However, theQk plot shows an eigenfunction so it will b
stationary in time, whereas theqx plot shows a superposition
so it will vary in time. In particular, theqx plot’s appearance
is short-lived and quickly decays to be barely distinguisha
from the ground state.

The word ‘‘particle’’ has a different meaning in quantu
field theory than it does in many other contexts. Usua
particle refers to an object localized in space. Howeve
phonon is usually called a particle, and it is distributed ov
the entire lattice. The same observation can be made,
example, for a photon~an excitation of the electromagnet
field! or for an electron~an excitation of its associated field
often called the Dirac field!. The local excitationq̂x

†u0& de-
scribed above is not a phonon; it is in fact a linear combi
tion of many phonon states. In some contexts, this local
citation is called a particle.

IV. CONCLUSION

A one-dimensional lattice ofN coupled harmonic oscilla-
tors is a good demonstration system for phonons and, aN
→`, for quantum fields. Classically, this system demo
strates the normal mode decomposition needed to solve
many-particle or field theory problems and also shows
two types of momentum,px andk, that such systems have
Quantum mechanically, the wave function is a complex fu
tion of N dimensions which cannot be plotted forN.3.
However, the probability density is a positive, real number
each point in thisN-dimensional space and can be project
onto groups of coordinate axes such as theqx position axes
andQk normal mode axes. The resulting probability dens
plots present a somewhat intuitive picture of the phon
wave function, or of the wave function of any quantum fie
What they show for a particular state of the system, the
herent state, is that displacement of each classical ma
replaced by a probability density centered on the class
location. Thus, just like the location of a single particle
blurred in quantum mechanics, the location of every parti
in a lattice, or every value of a field, is blurred in quantu

te,

Fig. 23. A local excitation atx53 from theq̂3
† field operator,q̂3

†u0&.
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field theory. We hope that these pictures can serve as
enticing introduction to the fascinating but difficult subje
of quantum field theory.

V. PROBLEMS

~1! Find the time dependence of the positions of the t
classical masses for each configuration in Fig. 3. UseQ1i

andQ2i or q1i andq2i as the coordinates at timet50. First
use theQ coordinates and then transform to theq coordi-
nates.

~2! Write explicit expressions for the four wave function
shown in Fig. 4.

~3! Show thatQ̂1u0& is an eigenstate of the two-partic

system, but thatq̂1u0& is not. Hint: findQ̂1 and q̂1 in terms

of Â1 andÂ1
† using Eqs.~11! and~1! and show that operating

on u0& with Q̂1 gives a single particle state, but thatq̂1 gives
a superposition of states.

~4! Find the time dependence of the positions of the ei
classical masses in Fig. 11. UseQxi or qxi as the coordinates
at timet50. First use theQ coordinates, and then transfor
into theq coordinates.

~5! ~Advanced! Evaluate the expectation value forQ̂1 and

Q̂2 for the states in Figs. 13 and 17~at timet50 only!. Hint:

the expectation value ofQ̂k for a stateuc& is ^cuQ̂kuc&,
where it is usually helpful to expressQ̂k anduc& in terms of

Âk and Âk
† . For example,uc&5Â1

†u0& and^cu5^0uÂ1 . Use
the result that̂n23 ...n4um23 ...m4&5)k523

4 dnkmk
. That is,

^n23 . . . n4um23 . . . m4& is 0 unless both sides have th
same number in each mode. For more of this sort of probl
see Ref. 13.
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