Amplitude and frequency variability of the pulsating DB white dwarf stars KUV 05134+2605 and PG 1654+160 observed with the Whole Earth Telescope

1South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa
2Present address: Institut für Astronomie, Universität Wien, Türkenschanzstraße 17, A-1180 Wien, Austria
3Department of Astronomy, University of Cape Town, Rondebosch 7700, South Africa
4Institut für Matematiske Realfag, Nordlysobservatoriet, Universitet i Tromsø 9000 Tromsø, Norway
5Konkoly Observatory, Box 67, H-1525 Budapest XII, Hungary
6Osservatorio Astronomico di Capodimonte, via Moiariello 16, 1-80131 Napoli, Italy
7Observatoire Midi-Pyrénées, CNRS/UMR5572, 14 av. E. Belin, 31400 Toulouse, France
8Observatoire de Paris-Meudon, LESIA, 92195 Meudon, France
9Centre for Astrophysics, University of Central Lancashire, Preston PR1 2HE
10Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
11Instituto Superior da Maia, Lugar de Vilarinho, 4470 Castelo da Maia, Portugal
12European Southern Observatory, 37800 Santa Cruz de La Palma, Canary Islands, Spain
13Departamento de Física, Universidade Federal de Santa Catarina, CP 476-CEP 88040-900 Florianópolis, SC-Brazil
14Departamento de Física e Química, Universidade de Caxias do Sul, 95001-970 Caxias do Sul, RS-Brazil
15Instituto de Física, UFRGS, Campus do Vale, C.P. 15051 Porto Alegre, RS, Brazil
16Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, USA
17Department of Physics & Space Sciences and SARA Observatory, Florida Institute of Technology, Melbourne, FL 32901, USA
18Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN 37132, USA
19Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
20Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
21Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
22Department of Physics, Astronomy and Material Science, SW Missouri State University, 901 S. National, Springfield, MO 65804 USA
23Department of Astronomy and McDonald Observatory, University of Texas at Austin, Austin, TX 78712, USA
24Harvard-Smithsonian Centre for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
25Information Technology Services Department, Southwestern University, Georgetown, TX 78626, USA
26Sloan Digital Sky Survey, Apache Pt. Observatory, PO Box 59, Sunspot, NM 88349, USA
27Los Alamos National Laboratory, X-2, MS T-085, Los Alamos, NM 87545-2345, USA
28Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aʻohōkū Place, Hilo, HI 96720, USA
29School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
30PO Box 518, Coomababran, NSW 2357, Australia
31Research School of Astronomy and Astrophysics, Australian National University, Weston Creek PO, ACT 2611, Australia
32National Astronomical Observatories and Joint Laboratory of Optical Astronomy, Chinese Academy of Sciences, Beijing 100012, China
33Perth Observatory, Walnut Rd, Bickley, Western Australia 6076, Australia

⋆E-mail: handler@astro.univie.ac.at

© 2003 RAS
ABSTRACT
We have acquired new time series photometry of the two pulsating DB white dwarf stars KUV 05134+2605 and PG 1654+160 with the Whole Earth Telescope. Additional single-site photometry is also presented. We use all these data plus all available archival measurements to study the temporal behaviour of the pulsational amplitudes and frequencies of these stars for the first time.

We demonstrate that both KUV 05134+2605 and PG 1654+160 pulsate in many modes, the amplitudes of which are variable in time; some frequency variability of PG 1654+160 is also indicated. Beating of multiple pulsation modes cannot explain our observations; the amplitude variability must therefore be intrinsic. We cannot find stable modes to be used for determinations of the evolutionary period changes of the stars. Some of the modes of PG 1654+160 appear at the same periods whenever detected. The mean spacing of these periods (≈ 40 s) suggests that they are probably caused by non-radial gravity-mode pulsations of spherical degree ℓ = 1. If so, PG 1654+160 has a mass around 0.6 M⊙.

The time-scales of the amplitude variability of both stars (down to two weeks) are consistent with theoretical predictions of resonant mode coupling, a conclusion which might however be affected by the temporal distribution of our data.

Key words: stars: individual: KUV 05134+2605 – stars: individual: PG 1654+160 – stars: oscillations – stars: variables: other.

1 INTRODUCTION
In recent times it has become clear that amplitude and frequency variations are common amongst pulsating stars. Various mechanisms for their explanation have been proposed. For example, resonant mode interaction (Moskalik 1985) is consistent with observations of this phenomenon in δ Scuti stars (e.g. Handler et al. 1998, 2000), whereas frequency changes of rapidly oscillating Ap stars may be attributed to variations in the magnetic field (Kurtz et al. 1994, 1997).

Time-resolved photometric observations of pulsating (pre-)white dwarf stars revealed that they are no exception in this respect. This bears a potentially enormous astrophysical reward: although these stars may only make part of their pulsation spectra observable to us at a given time, they may reveal their complete mode spectrum when observed persistently. Kleinman et al. (1998), Bond et al. (1996) and Vauclair et al. (2002) took advantage of this possibility and could then make seismic analyses for a pulsating DA white dwarf (G29-38) and two pulsating central stars of planetary nebulae (NGC 1501, RX J 2117+3412). Without their amplitude variability, these stars would still be poorly understood.

Published reports of amplitude and frequency variations are still sparse for the helium-atmosphere pulsating DB white dwarf stars (DBVs, see Bradley 1995, for a review), but so are their time-series photometric observations, mainly due to their faintness (most DBVs are around 16th magnitude). The glaring (B = 13.5) exception is the prototype DBV GD 358 for which a plethora of measurements, including three Whole Earth Telescope (WET, Nather et al. 1990) runs, is available. Although the mode amplitudes of GD 358 vary, the associated pulsation frequencies seem reasonably stable (Kepler et al. 2003). Very recently, some amplitude and frequency variations have also been reported for the DBVs CBS 114 and PG 1456+103 (Handler, Metcalfe & Wood 2002).

We have started a systematic observing program to obtain reliable frequency analyses of the mode spectra of all pulsating DB white dwarfs. Our measurements consist of extensive single-site observations, which can suffice for very simply-behaved objects (Handler 2001), or low-priority WET observations (this paper), or even full worldwide multisite campaigns.

2 OBSERVATIONS AND REDUCTIONS
The pulsating DB white dwarf stars KUV 05134+2605 and PG 1654+160 were chosen as secondary target stars for the WET runs Xcov20 and Xcov21 during 2000 November and 2001 April,
servations of KUV 05134+2605. The first part of the table contains the WET measurements, the second part lists additional single-site observations, and the third part contains the available discovery data (Grauer et al. 1989). Runs marked with asterisks were obtained with a CCD.

Table 1. Time-series photometry of KUV 05134+2605. The first part of the table contains the WET measurements, the second part lists additional single-site observations, and the third part contains the available discovery data (Grauer et al. 1989). Runs marked with asterisks were obtained with a CCD.

<table>
<thead>
<tr>
<th>Run name</th>
<th>Obs./Tel.</th>
<th>Date (UT)</th>
<th>Start (UT)</th>
<th>Length (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>asin-0080</td>
<td>McD 2.1 m</td>
<td>2000 Nov 20</td>
<td>11:32:40</td>
<td>0.90</td>
</tr>
<tr>
<td>asin-0082</td>
<td>McD 2.1 m</td>
<td>2000 Nov 21</td>
<td>10:35:30</td>
<td>1.78</td>
</tr>
<tr>
<td>joy-003</td>
<td>McD 2.1 m</td>
<td>2000 Nov 23</td>
<td>10:20:00</td>
<td>2.16</td>
</tr>
<tr>
<td>joy-013</td>
<td>McD 2.1 m</td>
<td>2000 Nov 26</td>
<td>08:52:16</td>
<td>3.55</td>
</tr>
<tr>
<td>joy-017</td>
<td>McD 2.1 m</td>
<td>2000 Nov 27</td>
<td>09:08:40</td>
<td>2.38</td>
</tr>
<tr>
<td>joy-021</td>
<td>McD 2.1 m</td>
<td>2000 Nov 28</td>
<td>07:16:20</td>
<td>5.10</td>
</tr>
<tr>
<td>joy-026</td>
<td>McD 2.1 m</td>
<td>2000 Nov 29</td>
<td>09:48:50</td>
<td>2.77</td>
</tr>
<tr>
<td>sara-0054*</td>
<td>SARA 0.9 m</td>
<td>2000 Nov 30</td>
<td>09:45:00</td>
<td>8.49</td>
</tr>
<tr>
<td>joy-029</td>
<td>McD 2.1 m</td>
<td>2000 Nov 30</td>
<td>09:51:20</td>
<td>2.50</td>
</tr>
<tr>
<td>joy-032</td>
<td>McD 2.1 m</td>
<td>2000 Dec 01</td>
<td>09:10:00</td>
<td>3.44</td>
</tr>
<tr>
<td>sara-0055*</td>
<td>SARA 0.9 m</td>
<td>2000 Dec 03</td>
<td>05:18:20</td>
<td>8.01</td>
</tr>
<tr>
<td>sara-0057*</td>
<td>SARA 0.9 m</td>
<td>2000 Dec 05</td>
<td>03:21:00</td>
<td>5.47</td>
</tr>
<tr>
<td>tsm-0088</td>
<td>McD 2.1 m</td>
<td>2000 Dec 05</td>
<td>09:46:00</td>
<td>2.67</td>
</tr>
</tbody>
</table>

KU12290H
- OHP 1.9 m | 1992 Dec 29 | 18:23:00 | 5.00
- KU12300H | OHP 1.9 m | 1992 Dec 30 | 17:50:00 | 4.50

gh-0484
- SAAO 1.0 m | 2000 Oct 04 | 00:45:26 | 2.55
- gh-0486* | SAAO 1.0 m | 2000 Oct 05 | 00:42:07 | 2.02
- gh-0488* | SAAO 1.0 m | 2000 Oct 06 | 00:36:43 | 2.76
- gh-0492* | SAAO 1.0 m | 2000 Oct 09 | 00:15:49 | 3.03
- gh-0493* | SAAO 0.75 m | 2001 Jan 30 | 19:01:40 | 2.40
- gh-0496* | SAAO 0.75 m | 2001 Jan 31 | 18:57:10 | 2.40
- gh-0499* | SAAO 0.75 m | 2001 Feb 01 | 18:40:15 | 2.62

adg-0076
- MtB 1.5 m | 1988 Oct 12 | 09:37:20 | 2.43
- adg-0077 | MtB 1.5 m | 1988 Oct 13 | 08:23:10 | 1.67
- adg-0080 | MtB 1.5 m | 1988 Oct 14 | 06:52:30 | 1.10
- adg-0081 | MtB 1.5 m | 1988 Oct 14 | 10:19:20 | 1.86
- adg-0082 | MtB 1.5 m | 1988 Oct 16 | 09:45:10 | 2.48
- adg-0084 | MtB 1.5 m | 1988 Oct 18 | 07:26:00 | 1.98

Total WET
- 49.22
Grand total
- 88.02

Observatory codes: McD = McDonald Observatory (USA), SARA = South-eastern Association for Research in Astronomy Observatory (USA), OHP = Observatoire de Haute-Provence (France), SAAO = South African Astronomical Observatory, MtB = Steward Observatory (Mt. Bigelow site, USA).

respectively. Such secondary programme stars are observed by the network if the primary target is not observable or if two telescopes are on line and the larger one already measures the primary or if the observing method at a certain site is not suitable for the primary (e.g. CCDs are not proper instruments for very bright stars). Although the temporal coverage of the variations of a secondary target is usually considerably poorer than that of the primary, the resulting data sets are often quite valuable (see Handler et al. 1997 for an example).

In addition to the WET measurements, we acquired single-site observations of KUV 05134+2605 and PG 1654+160 before and/or after the main data stream. In an effort to understand these two stars to the limits currently possible, we also re-analysed all available published and unpublished measurements. The time-series photometric data at our disposal are listed in Tables 1 and 2.

Most of the observations consisted of multichannel high-speed photoelectric photometry with 10-s integrations (see Kleinman, Nather & Philips 1996, for more information). Channel 1 measured the programme star, channel 2 measured a local comparison star, and

channel 3 simultaneously recorded sky background. If no third channel was available, the measurements were irregularly interrupted to measure sky. Data reduction was performed with a standard procedure, as e.g. described by Handler et al. (1997).
Our CCD measurements were acquired with a number of different photometers – which we do not describe in detail here. The observations were optimized to acquire at least two local comparison stars in the same field as the target by minimizing the readout time, ensuring a duty cycle as high as possible. In this way, consecutive data points were obtained in 10–30 s intervals, depending on the instrument.

CCD data reduction comprised correction for bias, dark counts and flat-field. Photometric measurements on these reduced frames were made with the programs MOMF (Kjeldsen & Frandsen 1992) or RTP (Østensen 2000), and differential light curves were created. No variability of any star other than the targets in the different CCD fields was found, and the comparison star ensemble resulting in the lowest scatter in the target star light curves was chosen.

At this point it should be noted that PG 1654+160 has a companion star (Zuckerman & Becklin 1992) at a separation of about 4″ distance that may affect our measurements. Fortunately for us, this companion is very red. Consequently, we used red-cutoff filters, e.g. a Schott BG 39 glass, which suppressed the companion’s contribution sufficiently (it then was ∼2 mag fainter than the target), but did not waste too many photons of the target star. This also means that the companion’s flux did not affect the amplitudes of the photoelectrically measured target star light curves significantly, as all our photomultipliers are blue-sensitive.

Finally, the times of measurement were transformed to Barycentric Julian Ephemeris Date (BJED); the barycentric correction was applied point by point. Finally, some overlapping portions of the combined light curves were merged, and the reduced time series were subjected to frequency analyses.

3 FREQUENCY ANALYSIS

Our frequency analyses were mainly performed with the program PERIOD 98 (Sperl 1998). This package applies single-frequency power spectrum analysis and simultaneous multifrequency sine-wave fitting. It also includes advanced options, such as the calculation of optimal light-curve fits for multiperiodic signals including harmonic, combination, and equally spaced frequencies, which are often found in the analysis of the light curves of pulsating white dwarf stars.

In one case to be indicated later, this method was supplemented by a residualgram analysis (Martinez & Koen 1994), which is based on a least-squares fit of a sine wave with \(M \) harmonics. One advantage of this method is that alias ambiguities can be evaluated more reliably by the simultaneous inclusion of the information in the Fourier harmonics.

3.1 KUV 05134+2605

We first analysed the WET measurements of KUV 05134+2605 with PERIOD 98. We computed the spectral window of the data (calculated as the Fourier Transform of a noise-free sinusoid with a frequency of 1.902 mHz and an amplitude of 9.7 milli-modulation amplitudes\(^1\) (mma)) followed by the amplitude spectrum itself. The results are shown in the upper two panels of Fig. 1. As the WET measurements were only acquired from North American observatories (a result from the star having second priority), the window function is poor.

\(^1\) One milli-modulation amplitude is the Fourier amplitude of a signal with a fractional intensity variation of 0.1 per cent; it is a standard unit for WET data analysis.

Still, we show some prewhitening steps in consecutive panels in Fig. 1. This has been done to indicate the main regions in which pulsational signals are present, but definite periods cannot be determined. In any case, it is suggested that KUV 05134+2605 has a rich pulsation spectrum.

This is not the only interesting feature of the pulsations of the star: in the discovery paper (Grauer et al. 1989) it was found to be of much higher amplitude and longer period compared to its pulsational state during the WET run. The star has changed from showing dominant pulsations with time-scales of 710 s and peak-to-peak amplitudes up to 0.2 mag to less than 0.1 mag and a dominant 530-s time-scale (Fig. 2).

We have therefore calculated amplitude spectra of all the available data (Fig. 3). Interestingly, the amplitude spectrum of the star was different every time it was observed. Besides the data discussed before, the measurements from 1992 show a dominant variability time-scale of around 650 s, and the 2001 February data have a prevailing time-scale of 570 s. Only the light curves from October 2000 appear similar to those acquired by the WET some 6 weeks later, but this actually only applies to the signal of highest amplitude. We conclude that KUV 05134+2605 shows notable amplitude variability.
WET observations of pulsating DB WDs

Figure 2. Upper panel: the discovery light curve of KUV 05134+2605. Lower panel: one of the light curves acquired during the WET run on the star. Note the change in the pulsational time-scales and amplitudes.

Figure 3. Amplitude spectra of all available measurements of KUV 05134+2605. The frequencies and amplitudes of the dominant signals are different in almost every data set.

Of course, all the data sets are affected by aliasing and no definite periods can be determined, but approximate periods in the different regions of power in the Fourier spectra that are separated by more than the width of the envelope of the corresponding spectral window, can be estimated. We summarize these results, omitting possible combination frequencies, in Table 3. The amplitudes in this table must be taken with some caution, as they could be affected by insufficient frequency resolution in some of the data sets.

We can attempt to construct the complete mode spectrum of the star by combining the results of the different observing seasons.

3.2 PG 1654+160

We again start the frequency analysis with the WET measurements. The spectral window and amplitude spectrum of these data are shown in Fig. 5. Although the amplitude spectrum does not appear very complicated, attempts to determine the underlying variations by prewhitening result in a large number of signals that seem to be present.

However, assuming that we deal with normal-mode pulsations of the star, the number of signals becomes unrealistically large, and some of the frequencies found that way are too closely spaced to be resolved within our data set. All this suggests that the amplitude spectrum of PG 1654+160 was not stable throughout the observations.

Consequently, we attempted to follow the suspected amplitude and frequency variability throughout the data set with various

Table 3. Dominant signals in the light curves of KUV 05134+2605 in our data. The error estimates in the periods include alias ambiguities, and amplitudes are listed for completeness.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Period (s)</th>
<th>Amplitude (mma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 1988</td>
<td>707 ± 6</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>665 ± 7</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>777 ± 8</td>
<td>10</td>
</tr>
<tr>
<td>Dec 1992</td>
<td>645 ± 9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>678 ± 11</td>
<td>9</td>
</tr>
<tr>
<td>Oct 2000</td>
<td>525 ± 7</td>
<td>9</td>
</tr>
<tr>
<td>Nov 2000</td>
<td>526 ± 3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>556 ± 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>600 ± 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>716 ± 5</td>
<td>3</td>
</tr>
<tr>
<td>Feb 2001</td>
<td>567 ± 8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>757 ± 14</td>
<td>8</td>
</tr>
</tbody>
</table>

methods but again had to realize that our temporal coverage is insufficient for a detailed analysis. Some results can however be obtained.

(i) The longer period pulsations ($P \gtrsim 700$ s) show a larger degree of instability.

(ii) The amplitude spectrum was more stable during the second part of the run (beginning with April 25).

(iii) Amplitude variability alone is insufficient to account for the observed variations; the pulsation frequencies also appear somewhat variable.

(iv) The periods of the strongest signals can be determined, albeit with large errors due to the instability and aliasing.

The periods we could determine are listed in Table 4, together with the results from the other data sets to which we now turn.

In the same fashion as in the previous section, we computed amplitude spectra of all our data sets over the years. We show them in Fig. 6 which demonstrates that the pulsational behaviour of PG 1654+160 is also highly variable in time; a comparison of light curves is shown in Fig. 7. The time-scales of the amplitude variations of PG 1654+160 can be as short as two weeks: the strong 913-s signal in the May 2001 data was absent in the previous WET data.

We determined the dominant periods in the different data sets, and summarize them in Table 4. Again, the amplitudes may be affected by resolution problems, and possible combination frequencies were excluded. In addition, there is good evidence for more signals being present in several of the data sets, but it is not possible to determine their periods and amplitudes reliably.

Some comments are necessary: the two strongest modes in the single-night data set from 1985 June are not resolved, which is why we cannot determine error estimates for their periods and thus disregard them for the following analysis. The errors on the other frequencies in this data set were assumed to be $1/4T$, where T is the length of the run. For the other data sets, the errors on the periods include some possible alias ambiguities. In the 1994 April data, the $2f$ harmonic of the dominant periodicity is also present. We therefore used the residualgram method (as described before) with $M = 2$ to obtain a more reliable determination of this period before searching for more signals.

It is interesting to note that some periodicities in Table 4 occur in more than one data set. We have displayed these results graphically in Fig. 8, where we again show the detected periods over the different observing seasons. We note that the shorter periods ($P <$
WET observations of pulsating DB WDs

4 DISCUSSION

We have shown that the amplitude spectra of both KUV 05134+2605 and PG 1654+160 are variable in time. Whereas we cannot find an underlying pattern in the periods of KUV 05134+2605, the roughly equidistant spacings within the shorter periods of PG 1654+160 suggest the presence of a number of radial overtones of g-modes. The size of this average period separation (∼40 s) is consistent with the expected mean period spacing of a normal-mass (∼0.6 M⊙) DBV white dwarf pulsating in ℓ = 1 modes (see, e.g. Bradley, Winget & Wood 1993).

A comparison of the individual mode periods of the known ℓ = 1 pulsator GD 358 (Winget et al. 1994; Vuille et al. 2000) and those of another DBV, CBS 114 (Handler et al. 2002), with that of PG 1654+160 also supports this interpretation. However, the number of available observed modes of PG 1654+160 is insufficient for seismic model calculations, and the uncertainties of their periods are too large.

What may be the cause of the amplitude (and possibly also frequency) variability in the two stars? As neither has been reported to be magnetic in the literature, interaction between the different pulsation modes remains the most promising hypothesis for an explanation.

In this case, the time-scale of the amplitude variability is expected to be of the order of the inverse growth rates of the affected modes. Growth rates are not very well known for pulsating white dwarfs, but it is clear that longer-period modes have larger growth rates than shorter-period ones. Detailed growth-rate calculations (Dolez & Vauclair 1981) imply that amplitude variability may occur on time-scales down to about one week.

These theoretical predictions are consistent with our observations, at least as far as we can tell. The longer-period modes of PG 1654+160 indeed seem to vary more rapidly in amplitude than the ones at shorter period [it is interesting to note that Kepler et al. (2003) made the same observation for GD 358], as implied by our attempts to trace these variations. The time-scale of the amplitude variability of both stars also appears to be of the expected order of magnitude. However, we must admit that the temporal distribution of our data is such that we can only detect variations on just these time-scales. Hence, the agreement we find can at best be regarded as qualitative.

5 SUMMARY AND CONCLUSIONS

We have carried out new Whole Earth Telescope measurements of the two pulsating DB white dwarf stars KUV 05134+2605 and PG 1654+160 which were supplemented by single-site data. We also re-analysed all available archival measurements of the two stars.

We showed, for the first time, that both have rich pulsational mode spectra, and that the pulsation amplitudes of both stars are highly
variable in time; PG 1654+160 may show some frequency variability in addition. Beating of multiple pulsation modes cannot explain all our observations, as the observed amplitude and frequency variability is too complex for such an interpretation; hence it must be intrinsic. The pronounced amplitude variations made it impossible to find stable modes to determine the evolutionary period change rates of the two stars.

Whereas there seems no systematic pattern in the periods of KUV 05134+2605 we measured, some of the modes of PG 1654+160 appear at the same periods whenever detected. The spacing of these periods, around 40 s, suggests that they are probably caused by non-radial gravity-mode pulsations of spherical degree $\ell = 1$ in a normal-mass DBV white dwarf.

The amplitude variabilities of both stars could be followed by means of the pre- and post-WET observations that were therefore essential for this work. Their time-scales are consistent with theoretical predictions of resonant mode coupling. This conclusion is however weakened by the temporal distribution of our data, which favour the detection of just those variability time-scales.

Before a more detailed investigation of the amplitude variations of these two stars can be performed (e.g. to guide theoretical work in this direction, Buchler, Goupil & Serre 1995), mode identifications and an improved sampling of the temporal behaviour of the pulsations through continued single-site measurements are desirable. Given the qualitative similarity of PG 1654 and the ‘typical’ DBV GD 358, we expect that the same nonlinear mode coupling and amplitude modulation mechanisms are at work in both stars. Having very rich mode spectra, both KUV 05134+2605 and PG 1654+160 are also attractive targets for future extensive multisite campaigns.

ACKNOWLEDGMENTS

We acknowledge support from Iowa State University, in part through NSF Grant AST-9876655. MSC is supported through the grants PD/18893/98, of FCT-Portugal, and POCTI/1999/FIS/34549 approved by FCT and POCTI, with funds from the European Community programme FEDER. PM acknowledges partial financial support by the Polish KBN grant 5 P03D 012 20.

REFERENCES

Østensen R., 2000, PhD thesis, Univ. Tromsø

This paper has been typeset from a TeX/LATeX file prepared by the author.